Analyzing Schizophrenia by DNA Microarrays

被引:48
|
作者
Horvath, Szatmar [1 ]
Janka, Zoltan [3 ]
Mirnics, Karoly [1 ,2 ]
机构
[1] Vanderbilt Univ, Dept Psychiat, Nashville, TN 37232 USA
[2] Vanderbilt Univ, Vanderbilt Kennedy Ctr Res Human Dev, Nashville, TN 37232 USA
[3] Univ Szeged, Dept Psychiat, Szeged, Hungary
关键词
DNA microarrays; gene expression; postmortem; RNA-seq; schizophrenia; transcriptome; GENE-EXPRESSION ANALYSIS; PREFRONTAL CORTEX; SUSCEPTIBILITY GENE; MINIMUM INFORMATION; ALTERED EXPRESSION; RGS4; POLYMORPHISMS; EXPERIMENT MIAME; BRAIN RESEARCH; RNA-SEQ; ASSOCIATION;
D O I
10.1016/j.biopsych.2010.07.017
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
To understand the pathological processes of schizophrenia, we must embrace the analysis of the diseased human brain: we will never be able to recapitulate the pathology of uniquely human disorders in an animal model. Based on the outcome of the transcriptome profiling experiments performed to date, it appears that schizophrenia is associated with a global gene expression disturbance across many cortical regions. In addition, transcriptome changes are present in multiple cell types, including specific subclasses of principal neurons, interneurons, and oligodendrocytes. Furthermore, transcripts related to synaptic transmission, energy metabolism, and inhibitory neurotransmission are routinely found underexpressed in the postmortem brain tissue of subjects with schizophrenia. To put these transcriptome data in biological context, we must make our data publicly available and report our findings in a proper, expanded Minimum Information About a Microarray Experiment format. Cell-type specific expression profiling and sequencing-based transcript assessments should be expanded, with particular attention to understanding splice-variant changes in various mental disorders. Deciphering the pathophysiology of mental disorders depends on integrating data from across many research fields and techniques. Leads from postmortem transcriptome profiling will be essential to generate model animals, perform tissue culture experiments, and develop or evaluate novel drugs to treat this devastating disorder.
引用
收藏
页码:157 / 162
页数:6
相关论文
共 50 条
  • [21] Analyzing antibody specificity with whole proteome microarrays
    Michaud, GA
    Salcius, M
    Zhou, F
    Bangham, R
    Bonin, J
    Guo, H
    Snyder, M
    Predki, PF
    Schweitzer, BI
    NATURE BIOTECHNOLOGY, 2003, 21 (12) : 1509 - 1512
  • [22] DNA微阵列(DNA microarrays)
    方福德
    中华预防医学杂志, 2003, (06) : 10 - 10
  • [23] Analyzing antibody specificity with whole proteome microarrays
    Gregory A Michaud
    Michael Salcius
    Fang Zhou
    Rhonda Bangham
    Jaclyn Bonin
    Hong Guo
    Michael Snyder
    Paul F Predki
    Barry I Schweitzer
    Nature Biotechnology, 2003, 21 : 1509 - 1512
  • [24] Repeatable printing of protein microarrays from DNA microarrays
    Stoevesandt, O.
    He, M.
    Taussig, M. J.
    NEW BIOTECHNOLOGY, 2009, 25 : S360 - S360
  • [25] Designed Peptide Libraries for Cell Analyzing Microarrays
    Mihara, Hisakazu
    BIOPOLYMERS, 2013, 100 (03) : 229 - 229
  • [26] DNA microarrays and their use in dermatology
    Mlakar, V.
    Glavac, D.
    ACTA DERMATOVENEROLOGICA ALPINA PANNONICA ET ADRIATICA, 2007, 16 (01): : 7 - 12
  • [27] DNA chips, microarrays and genomics
    Gupta, PK
    Roy, JK
    Prasad, M
    CURRENT SCIENCE, 1999, 77 (07): : 875 - 884
  • [28] DNA microarrays: Manufacture and applications
    Street, M
    AUSTRALASIAN BIOTECHNOLOGY, 2002, 12 (01) : 38 - 39
  • [29] DNA microarrays for identifying fishes
    Kochzius, M.
    Noelte, M.
    Weber, H.
    Silkenbeumer, N.
    Hjoerleifsdottir, S.
    Hreggvidsson, G. O.
    Marteinsson, V.
    Kappel, K.
    Planes, S.
    Tinti, F.
    Magoulas, A.
    Vazquez, E. Garcia
    Turan, C.
    Hervet, C.
    Falgueras, D. Campo
    Antoniou, A.
    Landi, M.
    Blohm, D.
    MARINE BIOTECHNOLOGY, 2008, 10 (02) : 207 - 217