On μ-symmetries, μ-reductions, and μ-conservation laws of Gardner equation

被引:6
|
作者
Orhan, Ozlem [1 ]
Ozer, Teoman [2 ]
机构
[1] Istanbul Tech Univ, Dept Math Engn, TR-34469 Maslak, Turkey
[2] Istanbul Tech Univ, Dept Civil Engn, TR-34469 Maslak, Turkey
关键词
mu-symmetries; mu-conservation laws; mu-reductions; classification; Gardner equation; KDV EQUATION;
D O I
10.1080/14029251.2019.1544789
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this study, we represent an application of the geometrical characterization of mu-prolongations of vector fields to the nonlinear partial differential Gardner equation with variable coefficients. First, mu-symmetries and the corresponding mu-symmetry classification are investigated and then mu-reduction forms of the equations are obtained. Furthermore, mu-invariant solutions are determined and mu-conservation laws of Gardner equation are studied.
引用
收藏
页码:69 / 90
页数:22
相关论文
共 50 条
  • [21] Lie symmetries, symmetry reductions and conservation laws of time fractional modified Korteweg-de Vries (mkdv) equation
    Akbulut, Arzu
    Tasan, Filiz
    CHAOS SOLITONS & FRACTALS, 2017, 100 : 1 - 6
  • [22] Construction of conservation laws for the Gardner equation, Landau–Ginzburg–Higgs equation, and Hirota–Satsuma equation
    Cheng Chen
    Faiza Afzal
    Yufeng Zhang
    CommunicationsinTheoreticalPhysics, 2024, 76 (05) : 51 - 59
  • [23] Conservation laws and symmetries of Hunter-Saxton equation: revisited
    Tian, Kai
    Liu, Q. P.
    NONLINEARITY, 2016, 29 (03) : 737 - 755
  • [24] Symmetries and conservation laws for a sixth-order Boussinesq equation
    Recio, E.
    Gandarias, M. L.
    Bruzon, M. S.
    CHAOS SOLITONS & FRACTALS, 2016, 89 : 572 - 577
  • [25] Symmetries and conservation laws of the generalized Krichever-Novikov equation
    Anco, S. C.
    Avdonina, E. D.
    Gainetdinova, A.
    Galiakberova, L. R.
    Ibragimov, N. H.
    Wolf, T.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (10)
  • [26] Lie symmetries and conservation laws of the Hirota-Ramani equation
    Nadjafikhah, Mehdi
    Shirvani-Sh, Vahid
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (11) : 4064 - 4073
  • [27] CONSERVATION LAWS AND SYMMETRIES
    DASS, T
    PHYSICAL REVIEW, 1966, 145 (04): : 1011 - &
  • [28] Nonlocal symmetries and conservation laws of the Sinh-Gordon equation
    Xiao-yan Tang
    Zu-feng Liang
    Journal of Nonlinear Mathematical Physics, 2017, 24 : 93 - 106
  • [29] On the geometry of Liouville equation: Symmetries, conservation laws, and Backlund transformations
    Kiselev, AV
    ACTA APPLICANDAE MATHEMATICAE, 2002, 72 (1-2) : 33 - 49
  • [30] SYMMETRIES OF CONSERVATION LAWS
    Konjik, Sanja
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2005, 77 (91): : 29 - 51