A selection of glycosylated polyacrylate nanoparticles has been prepared by radical-initiated emulsion polymerization in aqueous media. Using ethyl acrylate as a co-monomer, carbohydrate acrylates were incorporated into the poly(ethyl acrylate) framework to give stable emulsions of glyconanoparticles with an average particle size of around 40 nm. Using this technique a variety of glyconanoparticles were prepared from 3-O-acryloyl-1,2:5,6-di-O-isopropylidene-alpha-D-glucofuarnose,1-O-acryloyl-2,3:5,6-di-O-isopropylidene-alpha-Dmannofuranose, 6-O-acryloyl-1,2:3,4-di-O-isopropylidene-alpha-D-galactopyranose, 2-N-acryloyl-1,3,4,6-tetra-O-acetyl-beta-D-glucosamine, 5-O-acryloyl-2,3-isopropylidene-l-methoxy-beta-D,-ribofuranose and 4-N-acetyl-5'-O-acryloyl-2',3'-O-isol)ropylidene cytidine. Scanning electron microscopy, dynamic light scattering and proton NMR analysis of the emulsions indicated essentially 100% incorporation of the carbohydrate acrylate monomer into the polymer with the exception of O-benzyl- and O-benzoyl-protected carbohydrate acrylates, which gave incomplete incorporation. Formation of larger glyconanoparticles of -80 nm with (unprotected) 3-O-acryloyl-D-glucose and 5-O-acryloyl-l-methoxy-beta-D-ribofuranose revealed the influence of free hydroxyl groups in the monomer on the particle size during polymerization, a feature which is also apparently dependent on the amount of carbohydrate in the matrix. This methodology allows for a new, simple route to the synthesis of polymeric glyconano particles with potential applications in targeted drug delivery and materials development. (c) 2007 Elsevier Ltd. All rights reserved.