Natter: A Python']Python Natural Image Statistics Toolbox

被引:0
|
作者
Sinz, Fabian H. [1 ]
Lies, Joern-Philipp [2 ]
Gerwinn, Sebastian [3 ]
Bethge, Matthias [4 ,5 ]
机构
[1] Univ Tubingen, Dept Neuroethol, Bernstein Ctr Computat Neurosci, D-72076 Tubingen, Germany
[2] Univ Tubingen, D-72076 Tubingen, Germany
[3] OFFIS, Oldenburg, Germany
[4] Univ Tubingen, Werner Reichardt Ctr Integrat Neurosci, Bernstein Ctr Computat Neurosci, D-72076 Tubingen, Germany
[5] Max Planck Inst Biol Cybernet, D-72076 Tubingen, Germany
来源
JOURNAL OF STATISTICAL SOFTWARE | 2014年 / 61卷 / 05期
关键词
natural image statistics; L-p-spherically symmetric distributions; L-p-nested symmetric distributions; parameter estimation; inference; sampling; !text type='Python']Python[!/text; INDEPENDENT COMPONENTS; MODELS; DISTRIBUTIONS; EMERGENCE; FRAMEWORK; ENTROPY; SCENES; COLOR;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The statistical analysis and modeling of natural images is an important branch of statistics with applications in image signaling, image compression, computer vision, and human perception. Because the space of all possible images is too large to be sampled exhaustively, natural image models must inevitably make assumptions in order to stay tractable. Subsequent model comparison can then filter out those models that best capture the statistical regularities in natural images. Proper model comparison, however, often requires that the models and the preprocessing of the data match down to the implementation details. Here we present the Natter, a statistical software toolbox for natural images models, that can provide such consistency. The Natter includes powerful but tractable baseline model as well as standardized data preprocessing steps. It has an extensive test suite to ensure correctness of its algorithms, it interfaces to the modular toolkit for data processing toolbox MDP, and provides simple ways to log the results of numerical experiments. Most importantly, its modular structure can be extended by new models with minimal coding effort, thereby providing a platform for the development and comparison of probabilistic models for natural image data.
引用
收藏
页码:1 / 34
页数:34
相关论文
共 50 条
  • [1] Toolbox of image processing for numerical python']python
    Silva, AG
    Lotufo, RD
    Machado, RC
    [J]. XIV BRAZILIAN SYMPOSIUM ON COMPUTER GRAPHICS AND IMAGE PROCESSING, PROCEEDINGS, 2001, : 402 - 402
  • [2] Toolbox of image processing using the python']python language
    Silva, AG
    Lotufo, RD
    Machado, RC
    Saúde, AV
    [J]. 2003 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL 3, PROCEEDINGS, 2003, : 1049 - 1052
  • [3] MTpy: A Python']Python toolbox for magnetotellurics
    Krieger, Lars
    Peacock, Jared R.
    [J]. COMPUTERS & GEOSCIENCES, 2014, 72 : 167 - 175
  • [4] ObsPy: A Python']Python Toolbox for Seismology
    Beyreuther, Moritz
    Barsch, Robert
    Krischer, Lion
    Megies, Tobias
    Behr, Yannik
    Wassermann, Joachim
    [J]. SEISMOLOGICAL RESEARCH LETTERS, 2010, 81 (03) : 530 - 533
  • [5] Pyo, the Python']Python DSP toolbox
    Belanger, Olivier
    [J]. MM'16: PROCEEDINGS OF THE 2016 ACM MULTIMEDIA CONFERENCE, 2016, : 1214 - 1217
  • [6] PyCoTools: a Python']Python toolbox for COPASI
    Welsh, Ciaran M.
    Fullard, Nicola
    Proctor, Carole J.
    Martinez-Guimera, Alvaro
    Isfort, Robert J.
    Bascom, Charles C.
    Tasseff, Ryan
    Przyborski, Stefan A.
    Shanley, Daryl P.
    [J]. BIOINFORMATICS, 2018, 34 (21) : 3702 - 3710
  • [7] DASPy: A Python']Python Toolbox for DAS Seismology
    Hu, Minzhe
    Li, Zefeng
    [J]. SEISMOLOGICAL RESEARCH LETTERS, 2024, 95 (05) : 3055 - 3066
  • [8] WALNUT- A PYTHON']PYTHON BIOPSYCHOPHYSICS TOOLBOX
    Hoffmann, Sven
    Siebelmann, Bernhard
    Wascher, Edmund
    Rinkenauer, Gerhard
    [J]. JOURNAL OF COGNITIVE NEUROSCIENCE, 2013, : 173 - 173
  • [9] PyPLT: Python']Python Preference Learning Toolbox
    Camilleri, Elizabeth
    Yannakakis, Georgios N.
    Melhart, David
    Liapis, Antonios
    [J]. 2019 8TH INTERNATIONAL CONFERENCE ON AFFECTIVE COMPUTING AND INTELLIGENT INTERACTION (ACII), 2019,
  • [10] Orange: Data Mining Toolbox in Python']Python
    Demsar, Janez
    Curk, Tomaz
    Erjavec, Ales
    Gorup, Crt
    Hocevar, Tomaz
    Milutinovic, Mitar
    Mozina, Martin
    Polajnar, Matija
    Toplak, Marko
    Staric, Anze
    Stajdohar, Miha
    Umek, Lan
    Zagar, Lan
    Zbontar, Jure
    Zitnik, Marinka
    Zupan, Blaz
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2013, 14 : 2349 - 2353