Progress and potential of metal-organic frameworks (MOFs) for gas storage and separation: A review

被引:189
|
作者
Jia, Tao [1 ,2 ]
Gu, Yifan [1 ,2 ]
Li, Fengting [1 ,2 ,3 ]
机构
[1] Tongji Univ, Coll Environm Sci & Engn, State Key Lab Pollut Control & Resources Reuse, Shanghai 200092, Peoples R China
[2] Shanghai Inst Pollut Control & Ecol Secur, Shanghai 200092, Peoples R China
[3] 1239 Siping Rd, Shanghai 200092, Peoples R China
来源
JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING | 2022年 / 10卷 / 05期
基金
中国国家自然科学基金;
关键词
Metal-organic frameworks; Storage; CO2; capture; Light hydrocarbon separation; Structure-property relationship; HIGH ACETYLENE STORAGE; HYDROGEN STORAGE; CARBON-DIOXIDE; METHANE STORAGE; POROUS MATERIALS; HIGH-CAPACITY; CO2; CAPTURE; ETHANE/ETHYLENE SEPARATION; COORDINATION POLYMER; EFFICIENT REMOVAL;
D O I
10.1016/j.jece.2022.108300
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Gas storage and separation plays the most critically vital role in the utilization of energy resources and the petrochemical industry in modern society. The development of industry and technology has brought higher requirements and challenges to energy gas storage and hydrocarbon separation technology. Porous coordination polymers (PCPs) or metal-organic frameworks (MOFs), as one of the emerging porous crystalline materials with ultra-high specific surface area, are constructed via metal ions/clusters and organic linkers, which can be tailored for pore size and function, not only suitable for high-density storage of energy-related gases, but also the ability to separate target gases from hydrocarbon mixtures through host-guest interactions or sieving effects, resulting in low-energy footprint separations. This critical review summarizes recent advances in MOFs for hydrogen, methane, and acetylene storage, as well as carbon dioxide capture and light hydrocarbon separation. We mainly outline three feasible strategies for constructing efficient MOF adsorbents: high porosity, optimal framework structure and porosity, and functional group modification, discuss their representative examples, and highlight material design strategies and the structure-property relationship. Furthermore, we provide an outlook on the potential challenges and prospects for future progress of gas storage and separation in MOFs from laboratory scale to practical industrial implementation.
引用
收藏
页数:33
相关论文
共 50 条
  • [41] Metal-organic open frameworks (MOFs)
    Kaskel, S
    Schüth, F
    Stöcker, M
    MICROPOROUS AND MESOPOROUS MATERIALS, 2004, 73 (1-2) : 1 - 1
  • [42] Experimental visualization of breathing in fluorous metal-organic frameworks from single crystal diffraction - functionalized MOFs for gas storage and separation
    Wang, Xiaoping
    Yang, Chi
    Omary, Mohammad A.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2011, 67 : C69 - C69
  • [43] Potential application of metal-organic frameworks (MOFs) for hydrogen storage: Simulation by artificial intelligent techniques
    Cao, Yan
    Dhahad, Hayder A.
    Zare, Sara Ghaboulian
    Farouk, Naem
    Anqi, Ali E.
    Issakhov, Alibek
    Raise, Amir
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (73) : 36336 - 36347
  • [44] Storage and separation applications of nanoporous metal-organic frameworks
    Zou, Ruqiang
    Abdel-Fattah, Amr I.
    Xu, Hongwu
    Zhao, Yusheng
    Hickmott, Don D.
    CRYSTENGCOMM, 2010, 12 (05): : 1337 - 1353
  • [45] Composites of metal-organic frameworks (MOFs) and LDHs for energy storage and environmental applications: Fundamentals, progress, and perspectives
    Hu, Xi
    Zheng, Wanying
    Wu, Mengcheng
    Chen, Lingyun
    Chen, Shaowei
    SUSTAINABLE MATERIALS AND TECHNOLOGIES, 2023, 37
  • [46] Microporous metal-organic frameworks for acetylene storage and separation
    Zhang, Zhangjing
    Xiang, Shengchang
    Chen, Banglin
    CRYSTENGCOMM, 2011, 13 (20): : 5983 - 5992
  • [47] Review: Hydrogen storage in metal-organic frameworks
    不详
    CHEMSUSCHEM, 2010, 3 (06) : 651 - 651
  • [48] Hydrogen Storage in Metal-Organic Frameworks: A Review
    Langmi, Henrietta W.
    Ren, Jianwei
    North, Brian
    Mathe, Mkhulu
    Bessarabov, Dmitri
    ELECTROCHIMICA ACTA, 2014, 128 : 368 - 392
  • [49] The Chemistry of Metal-Organic Frameworks for Multicomponent Gas Separation
    Yang, Lifeng
    Zhang, Peixin
    Cui, Jiyu
    Cui, Xili
    Xing, Huabin
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (46)
  • [50] Porous Metal-Organic Frameworks for gas separation and purification
    Chen, Banglin
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257