Solving a hidden subgroup problem using the adiabatic quantum-computing paradigm

被引:10
|
作者
Rao, MVP [1 ]
机构
[1] Indian Inst Sci, Dept Comp Sci & Automat, Bangalore 560012, Karnataka, India
关键词
D O I
10.1103/PhysRevA.67.052306
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present and solve a restricted Abelian hidden subgroup problem using the adiabatic quantum-computing paradigm. The time step complexity is shown to be a polynomial in the number of input qubits. This paper is a step towards looking at the Abelian hidden subgroup problem from a quantum adiabatic standpoint.
引用
下载
收藏
页数:6
相关论文
共 50 条
  • [21] An approach for quantum computing using adiabatic evolution algorithm
    Sato, S
    Kinjo, M
    Nakajima, K
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2003, 42 (11): : 7169 - 7173
  • [22] Improving the Variational Quantum Eigensolver Using Variational Adiabatic Quantum Computing
    Harwood, Stuart M.
    Trenev, Dimitar
    Stober, Spencer T.
    Barkoutsos, Panagiotis
    Gujarati, Tanvi P.
    Mostame, Sarah
    Greenberg, Donny
    ACM TRANSACTIONS ON QUANTUM COMPUTING, 2022, 3 (01):
  • [23] An Efficient Quantum Algorithm for the Hidden Subgroup Problem in Nil-2 Groups
    Gábor Ivanyos
    Luc Sanselme
    Miklos Santha
    Algorithmica, 2012, 62 : 480 - 498
  • [24] Random Measurement Bases, Quantum State Distinction and Applications to the Hidden Subgroup Problem
    Jaikumar Radhakrishnan
    Martin Rötteler
    Pranab Sen
    Algorithmica, 2009, 55 : 490 - 516
  • [25] An efficient quantum algorithm for the hidden subgroup problem in nil-2 groups
    Ivanyos, Gabor
    Sanselme, Luc
    Santha, Miklos
    LATIN 2008: THEORETICAL INFORMATICS, 2008, 4957 : 759 - +
  • [26] Random Measurement Bases, Quantum State Distinction and Applications to the Hidden Subgroup Problem
    Radhakrishnan, Jaikumar
    Roetteler, Martin
    Sen, Pranab
    ALGORITHMICA, 2009, 55 (03) : 490 - 516
  • [27] The Hidden Subgroup Problem and Post-quantum Group-Based Cryptography
    Horan, Kelsey
    Kahrobaei, Delaram
    MATHEMATICAL SOFTWARE - ICMS 2018, 2018, 10931 : 218 - 226
  • [28] Quantum solution to the hidden subgroup problem for poly-near-Hamiltonian groups
    Gavinsky, D
    QUANTUM INFORMATION & COMPUTATION, 2004, 4 (03) : 229 - 235
  • [29] Random measurement bases, quantum state distinction and applications to the hidden subgroup problem
    Sen, Pranab
    CCC 2006: TWENTY-FIRST ANNUAL IEEE CONFERENCE ON COMPUTATIONAL COMPLEXITY, PROCEEDINGS, 2006, : 274 - 287
  • [30] An Efficient Quantum Algorithm for the Hidden Subgroup Problem in Nil-2 Groups
    Ivanyos, Gabor
    Sanselme, Luc
    Santha, Miklos
    ALGORITHMICA, 2012, 62 (1-2) : 480 - 498