Application of single-cell transcriptomics to kinetoplastid research

被引:8
|
作者
Briggs, Emma M. [1 ,2 ]
Warren, Felix S. L. [2 ]
Matthews, Keith R. [1 ]
McCulloch, Richard [2 ]
Otto, Thomas D. [2 ]
机构
[1] Univ Edinburgh, Sch Biol Sci, Inst Immunol & Infect Res, Edinburgh, Midlothian, Scotland
[2] Univ Glasgow, Inst Infect Immun & Inflammat, Wellcome Ctr Integrat Parasitol, Glasgow, Lanark, Scotland
基金
英国惠康基金; 英国生物技术与生命科学研究理事会;
关键词
bioinformatics; gene expression; kinetoplastid; parasitology; single-cell transcriptomics; MESSENGER-RNA ABUNDANCE; GENE-EXPRESSION; TRYPANOSOMA-BRUCEI; LEISHMANIA-MAJOR; DIFFUSION MAPS; CRUZI; SEQ; DIFFERENTIATION; IDENTIFICATION; REVEALS;
D O I
10.1017/S003118202100041X
中图分类号
R38 [医学寄生虫学]; Q [生物科学];
学科分类号
07 ; 0710 ; 09 ; 100103 ;
摘要
Kinetoplastid parasites are responsible for both human and animal diseases across the globe where they have a great impact on health and economic well-being. Many species and life cycle stages are difficult to study due to limitations in isolation and culture, as well as to their existence as heterogeneous populations in hosts and vectors. Single-cell transcriptomics (scRNA-seq) has the capacity to overcome many of these difficulties, and can be leveraged to disentangle heterogeneous populations, highlight genes crucial for propagation through the life cycle, and enable detailed analysis of host-parasite interactions. Here, we provide a review of studies that have applied scRNA-seq to protozoan parasites so far. In addition, we provide an overview of sample preparation and technology choice considerations when planning scRNA-seq experiments, as well as challenges faced when analysing the large amounts of data generated. Finally, we highlight areas of kinetoplastid research that could benefit from scRNA-seq technologies.
引用
收藏
页码:1223 / 1236
页数:14
相关论文
共 50 条
  • [41] Single-cell transcriptomics for the assessment of cardiac disease
    Miranda, Antonio M. A.
    Janbandhu, Vaibhao
    Maatz, Henrike
    Kanemaru, Kazumasa
    Cranley, James
    Teichmann, Sarah A.
    Huebner, Norbert
    Schneider, Michael D.
    Harvey, Richard P.
    Noseda, Michela
    NATURE REVIEWS CARDIOLOGY, 2023, 20 (05) : 289 - 308
  • [42] Validation of noise models for single-cell transcriptomics
    Grün D.
    Kester L.
    Van Oudenaarden A.
    Nature Methods, 2014, 11 (6) : 637 - 640
  • [43] Redefining intestinal immunity with single-cell transcriptomics
    James, Kylie Renee
    Elmentaite, Rasa
    Teichmann, Sarah Amalia
    Hold, Georgina Louise
    MUCOSAL IMMUNOLOGY, 2022, 15 (04) : 531 - 541
  • [44] Single-Cell Transcriptomics Meets Lineage Tracing
    Kester, Lennart
    van Oudenaarden, Alexander
    CELL STEM CELL, 2018, 23 (02) : 166 - 179
  • [45] Decoding uterine leiomyoma tumorigenesis using single-cell transcriptomics and single-cell proteomics
    Machado-Lopez, A.
    Perez-Moraga, R.
    Punzon-Jimenez, P.
    Llera-Oyola, J.
    Galvez-Viedma, M.
    Grases, D.
    Aragon-Fernandez, P.
    Satorres, E.
    Roson, B.
    Schoof, E. M.
    Porta-Pardo, E.
    Simon, C.
    Mas, A.
    HUMAN REPRODUCTION, 2023, 38
  • [46] Evaluating measures of association for single-cell transcriptomics
    Skinnider, Michael A.
    Squair, Jordan W.
    Foster, Leonard J.
    NATURE METHODS, 2019, 16 (05) : 381 - +
  • [47] Deep generative modeling for single-cell transcriptomics
    Lopez, Romain
    Regier, Jeffrey
    Cole, Michael B.
    Jordan, Michael I.
    Yosef, Nir
    NATURE METHODS, 2018, 15 (12) : 1053 - +
  • [48] Temporal modelling using single-cell transcriptomics
    Jun Ding
    Nadav Sharon
    Ziv Bar-Joseph
    Nature Reviews Genetics, 2022, 23 (6) : 355 - 368
  • [49] The power of single-cell transcriptomics in cardiovascular disease
    Andrew Robson
    Nature Cardiovascular Research, 2022, 1 : 606 - 606
  • [50] THE SINGLE-CELL TRANSCRIPTOMICS OF HUMAN IGA NEPHROPATHY
    Zhong, Yong
    Xiao, Xiangcheng
    NEPHROLOGY DIALYSIS TRANSPLANTATION, 2021, 36