The Adjacency Graphs of a Class of LFSRs and Their Applications*

被引:0
|
作者
Wang, Hui [1 ,2 ]
Feng, Xiutao [1 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[2] Sci & Technol Commun Secur Lab, Chengdu 610041, Peoples R China
基金
中国国家自然科学基金;
关键词
binary sequences; feedback; graph theory; polynomials; shift registers; maximal periods; de Bruijn sequences; adjacency graphs; Linear feedback shift registers; LFSRs; cycle joining method; nonlinear feedback shift registers; NFSRs; characteristic polynomial; primitive polynomial; Nonlinear feedback shift register (NFSR); de Bruijn sequence; Cycle structure; Adjacency graph; ALGEBRAIC ATTACKS; STREAM CIPHERS;
D O I
10.1049/cje.2019.08.004
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Nonlinear feedback shift registers (NFSRs) are widely used in communication and cryptography. How to construct more NFSRs with maximal periods, which can generate sequences with maximal periods, i.e., de Brujin sequences, is an attractive problem. Recently many results on constructing de Bruijn sequences from adjacency graphs of Linear feedback shift registers (LFSRs) by means of the cycle joining method have been obtained. In this paper we discuss a class of LFSRs with characteristic polynomial p(2)(x), where p(x) is a primitive polynomial of degree n >= 2 over the finite field F-2. As results, we determine their cycle structures and adjacency graphs, and further construct a class of new de Bruijn sequences from these LFSRs.
引用
收藏
页码:1210 / 1216
页数:7
相关论文
共 50 条
  • [41] On an adjacency property of almost all graphs
    Bonato, A
    Cameron, K
    DISCRETE MATHEMATICS, 2001, 231 (1-3) : 103 - 119
  • [42] Adjacency queries in dynamic sparse graphs
    Kowalik, Lukasz
    INFORMATION PROCESSING LETTERS, 2007, 102 (05) : 191 - 195
  • [43] Adjacency matrices and chemical transformation graphs
    Gribov, L. A.
    Dementiev, V. A.
    Mikhailov, I. V.
    JOURNAL OF STRUCTURAL CHEMISTRY, 2008, 49 (02) : 197 - 200
  • [44] A NOTE ON GRAPHS WITH A PRESCRIBED ADJACENCY PROPERTY
    ANANCHUEN, W
    CACCETTA, L
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1995, 51 (01) : 5 - 15
  • [45] SMALLEST GRAPHS WITH CERTAIN ADJACENCY PROPERTIES
    EXOO, G
    HARARY, F
    DISCRETE MATHEMATICS, 1980, 29 (01) : 25 - 32
  • [46] On Graphs with Zero Determinant of Adjacency Matrices
    徐寅峰
    董峰明
    应用数学, 1996, (02) : 254 - 255
  • [47] A new adjacency matrix for finite graphs
    Staples, George Stacey
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2008, 18 (3-4) : 979 - 991
  • [48] On α-adjacency energy of graphs and Zagreb index
    Pirzada, S.
    Rather, Bilal A.
    Ganie, Hilal A.
    ul Shaban, Rezwan
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2021, 18 (01) : 39 - 46
  • [49] Skew-adjacency matrices of graphs
    Cavers, M.
    Cioaba, S. M.
    Fallat, S.
    Gregory, D. A.
    Haemers, W. H.
    Kirkland, S. J.
    McDonald, J. J.
    Tsatsomeros, M.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (12) : 4512 - 4529
  • [50] Adjacency matrices of probe interval graphs
    Ghosh, Shamik
    Podder, Maitry
    Sen, Malay K.
    DISCRETE APPLIED MATHEMATICS, 2010, 158 (18) : 2004 - 2013