Cell segmentation in imaging-based spatial transcriptomics

被引:125
|
作者
Petukhov, Viktor [1 ,2 ]
Xu, Rosalind J. [3 ,4 ,5 ]
Soldatov, Ruslan A. [1 ]
Cadinu, Paolo [3 ,4 ]
Khodosevich, Konstantin [2 ]
Moffitt, Jeffrey R. [3 ,4 ]
Kharchenko, Peter, V [1 ,6 ]
机构
[1] Harvard Med Sch, Dept Biomed Informat, Boston, MA 02115 USA
[2] Univ Copenhagen, Fac Hlth & Med Sci, Biotech Res & Innovat Ctr, Copenhagen, Denmark
[3] Boston Childrens Hosp, Program Cellular & Mol Med, Boston, MA USA
[4] Harvard Med Sch, Dept Microbiol, Boston, MA 02115 USA
[5] Harvard Univ, Dept Chem, Boston, MA 02115 USA
[6] Harvard Stem Cell Inst, Cambridge, MA 02138 USA
关键词
EXPRESSION; INFERENCE; TISSUE;
D O I
10.1038/s41587-021-01044-w
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Single-molecule spatial transcriptomics protocols based on in situ sequencing or multiplexed RNA fluorescent hybridization can reveal detailed tissue organization. However, distinguishing the boundaries of individual cells in such data is challenging and can hamper downstream analysis. Current methods generally approximate cells positions using nuclei stains. We describe a segmentation method, Baysor, that optimizes two-dimensional (2D) or three-dimensional (3D) cell boundaries considering joint likelihood of transcriptional composition and cell morphology. While Baysor can take into account segmentation based on co-stains, it can also perform segmentation based on the detected transcripts alone. To evaluate performance, we extend multiplexed error-robust fluorescence in situ hybridization (MERFISH) to incorporate immunostaining of cell boundaries. Using this and other benchmarks, we show that Baysor segmentation can, in some cases, nearly double the number of cells compared to existing tools while reducing segmentation artifacts. We demonstrate that Baysor performs well on data acquired using five different protocols, making it a useful general tool for analysis of imaging-based spatial transcriptomics. Baysor enables cell segmentation based on transcripts detected by multiplexed FISH or in situ sequencing.
引用
收藏
页码:345 / +
页数:31
相关论文
共 50 条
  • [31] Multispectral imaging-based detection of apple bruises using segmentation network and classification model
    Fang, Yanru
    Bai, Hongyi
    Sun, Laijun
    Hou, Jingli
    Che, Yuhang
    JOURNAL OF FOOD SCIENCE, 2025, 90 (01)
  • [32] DEEPsc: A Deep Learning-Based Map Connecting Single-Cell Transcriptomics and Spatial Imaging Data
    Maseda, Floyd
    Cang, Zixuan
    Nie, Qing
    FRONTIERS IN GENETICS, 2021, 12
  • [33] Illuminating Non-genetic Cellular Heterogeneity with Imaging-Based Spatial Proteomics
    Gnann, Christian
    Cesnik, Anthony J.
    Lundberg, Emma
    TRENDS IN CANCER, 2021, 7 (04): : 278 - 282
  • [34] ADVANCED IMAGING-BASED NEUROSURGERY
    RUBINO, GJ
    BLACK, KL
    CRITICAL REVIEWS IN NEUROSURGERY, 1995, 5 (02) : 96 - 102
  • [35] Graphing cell relations in spatial transcriptomics
    Zhou, Xin
    NATURE COMPUTATIONAL SCIENCE, 2022, 2 (06): : 354 - 355
  • [36] Graphing cell relations in spatial transcriptomics
    Xin Zhou
    Nature Computational Science, 2022, 2 : 354 - 355
  • [37] Single-cell spatial transcriptomics
    Weber, Christine
    NATURE CELL BIOLOGY, 2021, 23 (11) : 1108 - 1108
  • [38] Single-cell spatial transcriptomics
    Christine Weber
    Nature Cell Biology, 2021, 23 : 1108 - 1108
  • [39] Imaging and imaging-based treatment of pheochromocytoma and paraganglioma
    Castinetti, Frederic
    Kroiss, Alexander
    Kumar, Rakesh
    Pacak, Karel
    Taieb, David
    ENDOCRINE-RELATED CANCER, 2015, 22 (04) : T135 - T145
  • [40] Spatial transcriptomics with single cell resolution
    Braubach, Oliver
    JOURNAL OF IMMUNOLOGY, 2020, 204 (01):