Data-Independent Feature Learning with Markov Random Fields in Convolutional Neural Networks

被引:3
|
作者
Peng, Yao [1 ]
Hankins, Richard [1 ]
Yin, Hujun [1 ]
机构
[1] Univ Manchester, Sch Elect & Elect Engn, Manchester M13 9PL, Lancs, England
关键词
Convolutional neural networks; Image representation; Markov random fields; Gibbs distribution; Self-organising maps; Image classification; Image features; SPATIAL-INTERACTION; CONVERGENCE; MODELS; SPACE;
D O I
10.1016/j.neucom.2019.03.107
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In image classification, deriving robust image representations is a key process that determines the performance of vision systems. Numerous image features and descriptors have been developed manually over the years. As an alternative, however, deep neural networks, in particular convolutional neural networks (CNNs), have become popular for learning image features or representations from data and have demonstrated remarkable performance in many real-world applications. But CNNs often require huge amount of labelled data, which may be prohibitive in many applications, as well as long training times. This paper considers an alternative, data-independent means of obtaining features for CNNs. The proposed framework makes use of the Markov random field (MRF) and self-organising map (SOM) to generate basic features and model both intra- and inter-image dependencies. Various MRF textures are synthesized first, and are then clustered by a convolutional translation-invariant SOM, to form generic image features. These features can be directly applied as early convolutional filters of the CNN, leading to a new way of deriving effective features for image classification. The MRF framework also offers a theoretical and transparent way to examine and determine the influence of image features on performance of CNNs. Comprehensive experiments on the MNIST, rotated MNIST, CIFAR-10 and CIFAR-100 datasets were conducted with results outperforming most state-of-the-art models of similar complexity. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:24 / 35
页数:12
相关论文
共 50 条
  • [31] Multiscale Bayesian texture segmentation using neural networks and Markov random fields
    Kim, Tae Hyung
    Eom, Il Kyu
    Kim, Yoo Shin
    NEURAL COMPUTING & APPLICATIONS, 2009, 18 (02): : 141 - 155
  • [32] Road segmentation using full convolutional neural networks with conditional random fields
    Song Q.
    Zhang C.
    Chen Y.
    Wang X.
    Yang X.
    2018, Tsinghua University (58): : 725 - 731
  • [33] CONVOLUTIONAL NEURAL NETWORKS FOR DEEP FEATURE LEARNING IN RETINAL VESSEL SEGMENTATION
    Khalaf, Aya F.
    Yassine, Inas A.
    Fahmy, Ahmed S.
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 385 - 388
  • [34] Data-independent Random Projections from the feature-map of the homogeneous polynomial kernel of degree two
    Lopez-Sanchez, Daniel
    Manuel Corchado, Juan
    Gonzalez Arrieta, Angelica
    INFORMATION SCIENCES, 2018, 436 : 214 - 226
  • [35] Object detection and feature base learning with sparse convolutional neural networks
    Gepperth, Alexander R. T.
    ARTIFICIAL NEURAL NETWORKS IN PATTERN RECOGNITION, PROCEEDINGS, 2006, 4087 : 221 - 232
  • [36] Convolutional neural random fields for action recognition
    Liu, Caihua
    Liu, Jie
    He, Zhicheng
    Zhai, Yujia
    Hu, Qinghua
    Huang, Yalou
    PATTERN RECOGNITION, 2016, 59 : 213 - 224
  • [37] Stabilizing Queuing Networks With Model Data-Independent Control
    Xie, Qian
    Jin, Li
    IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2022, 9 (03): : 1317 - 1326
  • [38] Kernel-Based Markov Random Fields Learning for Wireless Sensor Networks
    Zhao, Wei
    Liang, Yao
    2011 IEEE 36TH CONFERENCE ON LOCAL COMPUTER NETWORKS (LCN), 2011, : 155 - 158
  • [39] Graph Convolutional Networks Meet Markov Random Fields: Semi-Supervised Community Detection in Attribute Networks
    Jin, Di
    Liu, Ziyang
    Li, Weihao
    He, Dongxiao
    Zhang, Weixiong
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 152 - 159
  • [40] Stochastic approach to texture analysis using probabilistic neural networks and Markov random fields
    Dehmeshki, J
    Daemi, F
    Hatfield, F
    Rashidi, M
    APPLICATIONS OF DIGITAL IMAGE PROCESSING XX, 1997, 3164 : 346 - 358