Interkingdom Communication and Regulation of Mucosal Immunity by the Microbiome

被引:12
|
作者
Ethridge, Alexander D. [1 ]
Bazzi, Malak H. [2 ]
Lukacs, Nicholas W. [1 ,3 ,4 ]
Huffnagle, Gary B. [1 ,2 ,4 ,5 ]
机构
[1] Univ Michigan, Immunol Grad Program, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Mol Cellular & Dev Biol Grad Program, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Pathol, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Mary H Weiser Food Allergy Ctr, Ann Arbor, MI 48109 USA
[5] Univ Michigan, Dept Mol Cellular & Dev Biol, Ann Arbor, MI 48109 USA
来源
JOURNAL OF INFECTIOUS DISEASES | 2021年 / 223卷
基金
美国国家卫生研究院;
关键词
Microbiota; Dendritic Cell; Metabolite; T Regulatory Cell; GUT MICROBIOTA; BUTYRATE; INFLAMMATION; BACTERIA; RECEPTOR; BARRIER; CELLS; DIFFERENTIATION; MECHANISM; HISTAMINE;
D O I
10.1093/infdis/jiaa748
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Intercellular communication and environmental sensing are most often mediated through ligand-receptor binding and signaling. This is true for both host cells and microbial cells. The ligands can be proteins (cytokines, growth factors, and peptides), modified lipids, nucleic acid derivatives and small molecules generated from metabolic pathways. These latter nonprotein metabolites play a much greater role in the overall function of mucosal immunity than previously recognized, and the list of potential immunomodulatory molecules derived from the microbiome is growing. The most well-studied microbial signals are the nonmetabolite microbe-associated molecular pattern molecules, such as lipopolysaccharide and teichoic acid, that bind to host pattern recognition receptors. Here, we will highlight the immunomodulatory activities of other microbiome-derived molecules, such as short-chain fatty acids, bile acids, uric acid, prostaglandins, histamine, catecholamines, aryl hydrocarbon receptor ligands, and 12,13-diHOME.
引用
收藏
页码:S236 / S240
页数:5
相关论文
共 50 条
  • [31] Interkingdom signaling between gastrointestinal hormones and the gut microbiome
    Zhao, Xinyu
    Qiu, Ye
    Liang, Lanfan
    Fu, Xiangsheng
    GUT MICROBES, 2025, 17 (01)
  • [32] Interkingdom Gut Microbiome and Resistome of the Cockroach Blattella germanica
    Dominguez-Santos, Rebeca
    Perez-Cobas, Ana Elena
    Cuti, Paolo
    Perez-Brocal, Vicente
    Garcia-Ferris, Carlos
    Moya, Andres
    Latorre, Amparo
    Gil, Rosario
    MSYSTEMS, 2021, 6 (03)
  • [33] Impacts and Regulation of Dietary Nutrients on Gut Microbiome and Immunity
    He, Long
    Han, Meng
    Farrar, Shabnam
    Ma, Xi
    PROTEIN AND PEPTIDE LETTERS, 2017, 24 (05): : 380 - 381
  • [34] Regulation of mucosal immunity by a novel cytokine, interferon epsilon
    Hertzog, P.
    Fung, K. Y.
    Mangan, N.
    Cumming, H.
    Hansbro, P.
    Horvath, J.
    Carr, D.
    JOURNAL OF REPRODUCTIVE IMMUNOLOGY, 2010, 86 (01) : 18 - 18
  • [35] To sense or not to sense, Paneth cell regulation of mucosal immunity
    Weis, Sebastian
    King, Irah L.
    Vivas, Wolfgang
    CELL HOST & MICROBE, 2024, 32 (10) : 1648 - 1650
  • [36] Genetic approaches to the study of cytokine regulation of mucosal immunity
    Ramsay, AJ
    IMMUNOLOGY AND CELL BIOLOGY, 1995, 73 (06): : 484 - 488
  • [37] Editorial: Immunometabolism and nutritional regulation of intestinal mucosal immunity
    Feng, Yingying
    Cheang, Wai San
    Gan, Renyou
    Wu, Xin
    FRONTIERS IN IMMUNOLOGY, 2024, 15
  • [38] Linking interkingdom communication with host sensing
    Hall, R. A.
    Muehlschlegel, F. A.
    MYCOSES, 2008, 51 (05) : 373 - 373
  • [39] Paneth cell defensins and the regulation of the microbiome Detente at mucosal surfaces
    Salzman, Nita H.
    GUT MICROBES, 2010, 1 (06) : 401 - 406
  • [40] MOXIBUSTION MODULATES THE GUT MICROBIOME AND INTESTINAL MUCOSAL IMMUNITY IN RATS WITH ULCERATIVE COLITIS
    Wang, Xiaomei
    Qi, Qin
    Wu, Huangan
    Jin, Xiaoming
    Liu, Yanan
    Wang, Cun
    Liu, Huirong
    Bao, Chunhui
    GASTROENTEROLOGY, 2018, 154 (06) : S423 - S423