Minimal solutions for discrete-time control systems in metric spaces

被引:0
|
作者
Zaslavski, AJ [1 ]
机构
[1] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
关键词
complete metric space; generic property; good sequence; minimal sequence;
D O I
10.1081/NFA-120023862
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we study the structure of minimal solutions for an autonomous discrete-time control system in a metric space X determined by a continuous function v : X x X --> R-1. A sequence {x(i)} (i =) (-infinity) (infinity) subset of X is called (v)-minimal if for each pair of integers m(2) > m(1) and each sequence {y(i)) (m2)(i = m1) satisfying y(j) = x(j), Sigma(i=m1)(m2-1) v(x(i) , x(i), x(i+1)) less than or equal to (2) the inequality Sigma(i=m1)(m2-1) v(x(i), x(i+1)) less than or equal to Sigma(i=m1)(m2-1) v(y(i), y(i+1)) is valid. We con sider a space of functions v : X x X --> R-1 equipped with a natural complete metric and show that for a generic function v there exists a (v)-minimal sequence.
引用
收藏
页码:637 / 651
页数:15
相关论文
共 50 条
  • [1] Turnpike Properties of Approximate Solutions of Discrete-Time Optimal Control Problems on Compact Metric Spaces
    Zaslavski, Alexander J.
    VARIATIONAL AND OPTIMAL CONTROL PROBLEMS ON UNBOUNDED DOMAIN, 2014, 619 : 209 - 224
  • [2] Control Contraction Metric Synthesis for Discrete-time Nonlinear Systems
    Wei, Lai
    Mccloy, Ryan
    Bao, Jie
    IFAC PAPERSONLINE, 2021, 54 (03): : 661 - 666
  • [3] Discrete-time control systems on homogeneous spaces: partition property
    Jordan, Jens
    CONTROL AND CYBERNETICS, 2006, 35 (04): : 863 - 871
  • [4] Reachable discrete-time positive systems with minimal dimension control sets
    Caccetta, L
    Rumchev, VG
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS, 1998, 4 (04): : 539 - 552
  • [5] Structure of optimal solutions for discrete-time convex control systems
    Zaslavski, Alexander J.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2007, 8 (02) : 539 - 562
  • [6] Kullback–Leibler control for discrete-time nonlinear systems on continuous spaces
    Ito K.
    Kashima K.
    SICE Journal of Control, Measurement, and System Integration, 2022, 15 (02) : 119 - 129
  • [7] Discrete-Time Hybrid Control in Borel Spaces
    Héctor Jasso-Fuentes
    José-Luis Menaldi
    Tomás Prieto-Rumeau
    Applied Mathematics & Optimization, 2020, 81 : 409 - 441
  • [8] Discrete-Time Hybrid Control in Borel Spaces
    Jasso-Fuentes, Hector
    Menaldi, Jose-Luis
    Prieto-Rumeau, Tomas
    APPLIED MATHEMATICS AND OPTIMIZATION, 2020, 81 (02): : 409 - 441
  • [9] Optimal control for linear discrete-time systems with Markov perturbations in Hilbert spaces
    Ungureanu, Viorica Mariela
    IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2009, 26 (01) : 105 - 127
  • [10] Discrete-time systems: Control and tracking
    Lyshevski, SE
    PROCEEDINGS OF THE 41ST IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 2002, : 2774 - 2779