Nonconstructive computational mathematics

被引:2
|
作者
Kunen, K [1 ]
机构
[1] Univ Wisconsin, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
nonconstructive mathematics; primitive recursive arithmetic; Boyer-Moore theorem prover;
D O I
10.1023/A:1005888712422
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We describe a nonconstructive extension to primitive recursive arithmetic, both abstractly and as implemented on the Boyer-Moore prover. Abstractly, this extension is obtained by adding the unbounded mu operator applied to primitive recursive functions; doing so, one can define the Ackermann function and prove the consistency of primitive recursive arithmetic. The implementation does not mention the mu operator explicitly but has the strength to define the (mu) operator through the built-in functions EVAL$ and V&C$.
引用
收藏
页码:69 / 97
页数:29
相关论文
共 50 条