Acoustic Scattering Problems with Convolution Quadrature and the Method of Fundamental Solutions

被引:2
|
作者
Labarca, Ignacio [1 ]
Hiptmair, Ralf [1 ]
机构
[1] Swiss Fed Inst Technol, Seminar Appl Math, Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
Acoustic wave scattering; convolution quadrature; method of fundamental solutions; WAVE-EQUATION; CONVERGENCE; STABILITY;
D O I
10.4208/cicp.OA-2020-0249
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Time-domain acoustic scattering problems in two dimensions are studied. The numerical scheme relies on the use of the Convolution Quadrature (CQ) method to reduce the time-domain problem to the solution of frequency-domain Helmholtz equations with complex wavenumbers. These equations are solved with the method of fundamental solutions (MFS), which approximates the solution by a linear combination of fundamental solutions defined at source points inside (outside) the scatterer for exterior (interior) problems. Numerical results show that the coupling of both methods works efficiently and accurately for multistep and multistage based CQ.
引用
收藏
页码:985 / 1008
页数:24
相关论文
共 50 条
  • [31] The Method of Fundamental Solutions for axisymmetric elasticity problems
    A. Karageorghis
    G. Fairweather
    [J]. Computational Mechanics, 2000, 25 : 524 - 532
  • [32] The method of fundamental solutions for anisotropic thermoelastic problems
    Hematiyan, M. R.
    Mohammadi, M.
    Tsai, Chia-Cheng
    [J]. APPLIED MATHEMATICAL MODELLING, 2021, 95 (95) : 200 - 218
  • [33] The method of fundamental solutions for inhomogeneous elliptic problems
    A. Poullikkas
    A. Karageorghis
    G. Georgiou
    [J]. Computational Mechanics, 1998, 22 : 100 - 107
  • [34] The method of fundamental solutions for axisymmetric elasticity problems
    Karageorghis, A
    Fairweather, G
    [J]. COMPUTATIONAL MECHANICS, 2000, 25 (06) : 524 - 532
  • [35] Fundamental constraints on broadband passive acoustic treatments in unidimensional scattering problems
    Meng, Yang
    Romero-Garcia, Vicente
    Gabard, Gwenael
    Groby, Jean-Philippe
    Bricault, Charlie
    Goude, Sebastien
    Sheng, Ping
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2022, 478 (2265):
  • [36] The method of fundamental solutions for the scattering problem of an open cavity
    Wang, Yujie
    Zheng, Enxi
    Guo, Wenke
    [J]. ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2023, 146 : 436 - 447
  • [37] The Method of Fundamental Solutions in Electromagnetic Scattering by a Chiral Obstacle
    Athanasiadou, E. S.
    Arkoudis, I
    [J]. INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019, 2020, 2293
  • [38] Generalized convolution quadrature for non smooth sectorial problems
    Guo, J.
    Lopez-Fernandez, M.
    [J]. Calcolo, 2025, 62 (01)
  • [39] The method of approximate fundamental solutions (MAFS) for Stefan problems
    Reutskiy, S. Yu.
    [J]. ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2012, 36 (03) : 281 - 292
  • [40] The method of fundamental solutions for free surface Stefan problems
    Chantasiriwan, S.
    Johansson, B. T.
    Lesnic, D.
    [J]. ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2009, 33 (04) : 529 - 538