Spatiotemporal Graph and Hypergraph Partitioning Models for Sparse Matrix-Vector Multiplication on Many-Core Architectures

被引:7
|
作者
Abubaker, Nabil [1 ]
Akbudak, Kadir [2 ]
Aykanat, Cevdet [1 ]
机构
[1] Bilkent Univ, Dept Comp Engn, TR-06800 Ankara, Turkey
[2] King Abdullah Univ Sci & Technol, KSA, Extreme Comp Res Ctr, Dept Appl Math & Computat, Thuwal 23955, Saudi Arabia
关键词
Sparse matrix; sparse matrix-vector multiplication; data locality; spatial locality; temporal locality; hypergraph model; bipartite graph model; graph model; hypergraph partitioning; graph partitioning; Intel many integrated core architecture; Intel Xeon Phi; EXPLOITING LOCALITY; PERFORMANCE;
D O I
10.1109/TPDS.2018.2864729
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
There exist graph/hypergraph partitioning-based row/column reordering methods for encoding either spatial or temporal locality for sparse matrix-vector multiplication (SpMV) operations. Spatial and temporal hypergraph models in these methods are extended to encapsulate both spatial and temporal localities based on cut/uncut net categorization obtained from vertex partitioning. These extensions of spatial and temporal hypergraph models encode the spatial locality primarily and the temporal locality secondarily, and vice-versa, respectively. However, the literature lacks models that simultaneously encode both spatial and temporal localities utilizing only vertex partitioning for further improving the performance of SpMV on shared-memory architectures. In order to fill this gap, we propose a novel spatiotemporal hypergraph model that leads to a one-phase spatiotemporal reordering method which encodes both types of locality simultaneously. We also propose a framework for spatiotemporal methods which encodes both types of locality in two dependent phases and two separate phases. The validity of the proposed spatiotemporal models and methods are tested on a wide range of sparse matrices and the experiments are performed on both a 60-core Intel Xeon Phi processor and a Xeon processor. Results show the validity of the methods via almost doubling the Gflop/s performance through enhancing data locality in parallel SpMV operations.
引用
收藏
页码:445 / 458
页数:14
相关论文
共 50 条
  • [31] Vector ISA extension for sparse matrix-vector multiplication
    Vassiliadis, S
    Cotofana, S
    Stathis, P
    EURO-PAR'99: PARALLEL PROCESSING, 1999, 1685 : 708 - 715
  • [32] Understanding the performance of sparse matrix-vector multiplication
    Goumas, Georgios
    Kourtis, Kornilios
    Anastopoulos, Nikos
    Karakasis, Vasileios
    Koziris, Nectarios
    PROCEEDINGS OF THE 16TH EUROMICRO CONFERENCE ON PARALLEL, DISTRIBUTED AND NETWORK-BASED PROCESSING, 2008, : 283 - +
  • [33] Sparse matrix-vector multiplication design on FPGAs
    Sun, Junqing
    Peterson, Gregory
    Storaasli, Olaf
    FCCM 2007: 15TH ANNUAL IEEE SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES, PROCEEDINGS, 2007, : 349 - +
  • [34] Sparse Matrix-Vector Multiplication on a Reconfigurable Supercomputer
    DuBois, David
    DuBois, Andrew
    Connor, Carolyn
    Poole, Steve
    PROCEEDINGS OF THE SIXTEENTH IEEE SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES, 2008, : 239 - +
  • [35] Node aware sparse matrix-vector multiplication
    Bienz, Amanda
    Gropp, William D.
    Olson, Luke N.
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2019, 130 : 166 - 178
  • [36] STRUCTURED SPARSE MATRIX-VECTOR MULTIPLICATION ON A MASPAR
    DEHN, T
    EIERMANN, M
    GIEBERMANN, K
    SPERLING, V
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1994, 74 (06): : T534 - T538
  • [37] Performance Aspects of Sparse Matrix-Vector Multiplication
    Simecek, I.
    ACTA POLYTECHNICA, 2006, 46 (03) : 3 - 8
  • [38] On improving the performance of sparse matrix-vector multiplication
    White, JB
    Sadayappan, P
    FOURTH INTERNATIONAL CONFERENCE ON HIGH-PERFORMANCE COMPUTING, PROCEEDINGS, 1997, : 66 - 71
  • [39] Sparse matrix-vector multiplication -: Final solution?
    Simecek, Ivan
    Tvrdik, Pavel
    PARALLEL PROCESSING AND APPLIED MATHEMATICS, 2008, 4967 : 156 - 165
  • [40] Hypergraph-partitioning-based decomposition for parallel sparse-matrix vector multiplication
    Çatalyürek, ÜV
    Aykanat, C
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 1999, 10 (07) : 673 - 693