Microstructural crack segmentation of three-dimensional concrete images based on deep convolutional neural networks

被引:46
|
作者
Dong, Yijia [1 ,2 ,3 ]
Su, Chao [2 ]
Qiao, Pizhong [1 ,4 ]
Sun, Lizhi [3 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Naval Architecture Ocean & Civil Engn, Shanghai 200240, Peoples R China
[2] Hohai Univ, Coll Water Conservancy & Hydropower Engn, Nanjing 210098, Peoples R China
[3] Univ Calif Irvine, Dept Civil & Environm Engn, Irvine, CA 92697 USA
[4] Washington State Univ, Dept Civil & Environm Engn, Pullman, WA 99164 USA
基金
中国国家自然科学基金;
关键词
Concrete; Microstructural cracks; Segmentation; Deep convolutional neural networks; X-ray CT images; RAY COMPUTED-TOMOGRAPHY; ATTENUATION CORRECTION; ACOUSTIC-EMISSION; DAMAGE; CT; EVOLUTION;
D O I
10.1016/j.conbuildmat.2020.119185
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
As a nondestructive imaging technology, X-ray CT has become an effective tool for studying the microstructural damage of concrete. However, autonomous identification and segmentation of microstructural cracks remains a challenge due to the same greyscales of voids and cracks in CT images. To address this problem, this paper develops a new method for microstructural crack segmentation of three-dimensional concrete images based on the deep convolutional neural networks. The model architecture and training scheme of the proposed network are specifically designed to achieve the high accuracy in the segmentation of narrowly opened cracks. Meanwhile, the method can also be used to separate aggregates from mortar with high precision. The segmentation results are compared with manual segmentation to validate the performance of the proposed method, demonstrating that the proposed method is capable of successfully separating microcracks from voids through their shapes and the aggregates from the mortar matrix with high precision. Finally, the three-dimensional concrete microstructure is reconstructed with microcrack patterns dependent on freeze-thaw actions, further manifesting the capability of the proposed method in the internal damage analysis of concrete. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Deep symmetric three-dimensional convolutional neural networks for identifying acute ischemic stroke via diffusion-weighted images
    Cui, Liyuan
    Han, Shanhua
    Qi, Shouliang
    Duan, Yang
    Kang, Yan
    Luo, Yu
    JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2021, 29 (04) : 551 - 566
  • [22] PROSTATE SEGMENTATION IN MR IMAGES USING ENSEMBLE DEEP CONVOLUTIONAL NEURAL NETWORKS
    Jia, Haozhe
    Xia, Yong
    Cai, Weidong
    Fulham, Michael
    Feng, David Dagan
    2017 IEEE 14TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2017), 2017, : 762 - 765
  • [23] Automatic Segmentation Using Deep Convolutional Neural Networks for Tumor CT Images
    Li, Yunbo
    Li, Xiaofeng
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2023, 37 (03)
  • [24] Building Segmentation of Aerial Images in Urban Areas with Deep Convolutional Neural Networks
    Yi, Yaning
    Zhang, Zhijie
    Zhang, Wanchang
    ADVANCES IN REMOTE SENSING AND GEO INFORMATICS APPLICATIONS, 2019, : 61 - 64
  • [25] Breast Lesion Segmentation in Ultrasound Images Using Deep Convolutional Neural Networks
    Ghosh, Dipannita
    Kumar, Amish
    Ghosal, Palash
    Chowdhury, Tamal
    Sadhu, Anup
    Nandi, Debashis
    2020 IEEE CALCUTTA CONFERENCE (CALCON), 2020, : 318 - 322
  • [26] Road Segmentation in SAR Satellite Images With Deep Fully Convolutional Neural Networks
    Henry, Corentin
    Azimi, Seyed Majid
    Merkle, Nina
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (12) : 1867 - 1871
  • [27] Crack segmentation in high-resolution images using cascaded deep convolutional neural networks and Bayesian data fusion
    Tang, Wen
    Wu, Rih-Teng
    Jahanshahi, Mohammad R.
    SMART STRUCTURES AND SYSTEMS, 2022, 29 (01) : 221 - 235
  • [28] CrackDenseLinkNet: a deep convolutional neural network for semantic segmentation of cracks on concrete surface images
    Manjunatha, Preetham
    Masri, Sami F.
    Nakano, Aiichiro
    Wellford, Landon Carter
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2024, 23 (02): : 796 - 817
  • [29] Comparison of deep convolutional neural networks and edge detectors for image-based crack detection in concrete
    Dorafshan, Sattar
    Thomas, Robert J.
    Maguire, Marc
    CONSTRUCTION AND BUILDING MATERIALS, 2018, 186 : 1031 - 1045
  • [30] Deep learning-based three-dimensional segmentation of the prostate on computed tomography images
    Shahedi, Maysam
    Halicek, Martin
    Dormer, James D.
    Schuster, David M.
    Fei, Baowei
    JOURNAL OF MEDICAL IMAGING, 2019, 6 (02)