Adaptive Inverse Control of Proton Exchange Membrane Fuel Cell Using RBF Neural Network

被引:0
|
作者
Rezazadeh, A. [1 ]
Askarzadeh, A. [1 ]
Sedighizadeh, M. [2 ]
机构
[1] Shahid Beheshti Univ, Fac Elect & Comp Engn, GC, Tehran 1983963113, Iran
[2] Imam Khomeini Int Univ, Fac Engn & Technol, Qazvin, Iran
来源
关键词
Proton exchange membrane fuel cell system; adaptive inverse control; radial basis function neural network; DYNAMIC-MODEL; POWER-PLANT;
D O I
暂无
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Proton exchange membrane fuel cells (PEMFCs) present remarkable control demands, due to the inherent nonlinear characteristics and time-varying parameters. This paper deals with the application of adaptive inverse control using radial basis function neural network (RBFNN) to PEMFC system. This control scheme has the advantage of not needing to identify the dynamical parameters of the system for design and scheduling of the controller parameters. In order to improve the control aim and to guarantee the closed loop stability as well as system's robustness a feedback PD controller is combined with the RBF-based adaptive inverse control. Results from the simulation manifest that the inverse control scheme is promising technique and can ensure the satisfactory performance.
引用
收藏
页码:3105 / 3117
页数:13
相关论文
共 50 条
  • [31] Reactant Control System for Proton Exchange Membrane Fuel Cell
    Rosli, R. E.
    Sulong, A. B.
    Daud, W. R. W.
    Zulkifley, M. A.
    Rosli, M. I.
    Majlan, E. H.
    Haque, M. A.
    PROCEEDING OF 4TH INTERNATIONAL CONFERENCE ON PROCESS ENGINEERING AND ADVANCED MATERIALS (ICPEAM 2016), 2016, 148 : 615 - 620
  • [32] Adaptive Nonlinear Parameter Estimation for a Proton Exchange Membrane Fuel Cell
    Xing, Yashan
    Na, Jing
    Chen, Mingrui
    Costa-Castello, Ramon
    Roda, Vicente
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2022, 37 (08) : 9012 - 9023
  • [33] Diagnosing Improper Membrane Water Content in Proton Exchange Membrane Fuel Cell Using Two-Dimensional Convolutional Neural Network
    Zhang, Heng
    Liu, Zhongyong
    Liu, Weilai
    Mao, Lei
    ENERGIES, 2022, 15 (12)
  • [34] Control of Voltage in Proton Exchange Membrane Fuel Cell Using Model Reference Control Approach
    Najafizadegan, Hamideh
    Zarabadipour, Hassan
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2012, 7 (08): : 6752 - 6761
  • [35] Proton exchange membrane fuel cell-powered bidirectional DC motor control based on adaptive sliding-mode technique with neural network estimation
    Chi, Xuncheng
    Quan, Shengwei
    Chen, Jinzhou
    Wang, Ya-Xiong
    He, Hongwen
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (39) : 20282 - 20292
  • [36] Modeling of a single cell micro proton exchange membrane fuel cell by a new hybrid neural network method
    Mehrpooya, Mehdi
    Ghorbani, Bahram
    Jafari, Bahram
    Aghbashlo, Mortaza
    Pouriman, Mohammadhosein
    THERMAL SCIENCE AND ENGINEERING PROGRESS, 2018, 7 : 8 - 19
  • [37] Inverse modeling for adaptive control using neural network
    Abouzalam, B.A.
    1995, AMSE Press, Tassin-la-Demi-Lune, France (46): : 1 - 3
  • [38] Fault Detection for Proton Exchange Membrane Fuel Cell using Adaptive Extended Kalman Filter
    Indriawati, Katherin
    Christnantasari, Tasya Y.
    Hamidah, Nur Laila
    ENGINEERING LETTERS, 2024, 32 (06) : 1182 - 1190
  • [39] Temperature control of proton exchange membrane fuel cell thermal management system based on adaptive LQR control
    Pei Y.-W.
    Chen F.-X.
    Hu Z.
    Zhai S.
    Pei F.-L.
    Zhang W.-D.
    Jiao J.-R.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2022, 52 (09): : 2014 - 2024
  • [40] An artificial neural network ensemble method for fault diagnosis of proton exchange membrane fuel cell system
    Shao, Meng
    Zhu, Xin-Jian
    Cao, Hong-Fei
    Shen, Hai-Feng
    ENERGY, 2014, 67 : 268 - 275