Machine Learning-Based Immunological Synapse Quantification to Predict CAR T Efficacy

被引:0
|
作者
Liu, Dongfang [1 ]
机构
[1] Rutgers New Jersey Med Sch, Pathol Immunol & Lab Med, Newark, NJ USA
关键词
D O I
暂无
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
838
引用
收藏
页码:369 / 370
页数:2
相关论文
共 50 条
  • [41] Explainable machine learning for profiling the immunological synapse and functional characterization of therapeutic antibodies
    Sayedali Shetab Boushehri
    Katharina Essig
    Nikolaos-Kosmas Chlis
    Sylvia Herter
    Marina Bacac
    Fabian J. Theis
    Elke Glasmacher
    Carsten Marr
    Fabian Schmich
    Nature Communications, 14
  • [42] Autonomous Car Following: A Learning-Based Approach
    Lefevre, Stephanie
    Carvalho, Ashwin
    Borrelli, Francesco
    2015 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2015, : 920 - 926
  • [43] Quantification of the covariation of lake microbiomes and environmental variables using a machine learning-based framework
    Sperlea, Theodor
    Kreuder, Nico
    Beisser, Daniela
    Hattab, Georges
    Boenigk, Jens
    Heider, Dominik
    MOLECULAR ECOLOGY, 2021, 30 (09) : 2131 - 2144
  • [44] A Comprehensive Analysis on the Efficacy of Machine Learning-Based Algorithms for Breast Cancer Classification
    Senthilkumar, K. P.
    Narmatha, P.
    Narasimharao, Jonnadula
    Mustare, Narendra
    Rufus, N. Herald Anantha
    Singh, Yashapl
    JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (02) : 857 - 866
  • [45] Comprehensive machine learning-based preoperative blood features predict the prognosis for ovarian cancer
    Wu, Meixuan
    Gu, Sijia
    Yang, Jiani
    Zhao, Yaqian
    Sheng, Jindan
    Cheng, Shanshan
    Xu, Shilin
    Wu, Yongsong
    Ma, Mingjun
    Luo, Xiaomei
    Zhang, Hao
    Wang, Yu
    Zhao, Aimin
    BMC CANCER, 2024, 24 (01)
  • [46] Machine Learning-Based Desmoplastic Signatures Predict Patient Outcomes in Pancreatic Ductal Adenocarcinoma
    Guo, Jason L.
    Mascharak, Shamik
    Foster, Deshka S.
    Guardino, Nicholas J.
    Griffin, Michelle
    Miller, Elisabeth
    Raghavan, Shyam
    Longacre, Teri A.
    Norton, Jeffrey A.
    Longaker, Michael T.
    JOURNAL OF THE AMERICAN COLLEGE OF SURGEONS, 2022, 235 (05) : S53 - S54
  • [47] Machine learning-based methods and novel data models to predict adverse drug reaction
    Wang, Jinxian
    Deng, Yuanyuan
    Shu, Liang
    Deng, Lei
    2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, : 1226 - 1230
  • [48] Comprehensive machine learning-based preoperative blood features predict the prognosis for ovarian cancer
    Meixuan Wu
    Sijia Gu
    Jiani Yang
    Yaqian Zhao
    Jindan Sheng
    Shanshan Cheng
    Shilin Xu
    Yongsong Wu
    Mingjun Ma
    Xiaomei Luo
    Hao Zhang
    Yu Wang
    Aimin Zhao
    BMC Cancer, 24
  • [49] Comprehensive Machine Learning-Based Preoperative Blood Features Predict the Prognosis for Ovarian Cancer
    Wu, Meixuan
    Gu, Sijia
    Yang, Jiani
    Zhao, Yaqian
    Sheng, Jindan
    Cheng, Shanshan
    Xu, Shilin
    Wu, Yongsong
    Ma, Mingjun
    Luo, Xiaomei
    Zhang, Hao
    Wang, Yu
    Zhao, Aimin
    OBSTETRICAL & GYNECOLOGICAL SURVEY, 2024, 79 (07) : 411 - 412
  • [50] Program Analysis and Machine Learning-based Approach to Predict Power Consumption of CUDA Kernel
    Alavani, Gargi
    Desai, Jineet
    Saha, Snehanshu
    Sarkar, Santonu
    ACM TRANSACTIONS ON MODELING AND PERFORMANCE EVALUATION OF COMPUTING SYSTEMS, 2023, 8 (04)