Extended feedback and simulation strategies for a delayed fractional-order control system

被引:4
|
作者
Huang, Chengdai [1 ]
Liu, Heng [2 ]
Chen, Xiaoping [3 ]
Cao, Jinde [4 ]
Alsaedi, Ahmed [5 ]
机构
[1] Xinyang Normal Univ, Sch Math & Stat, Xinyang 464000, Peoples R China
[2] Guangxi Univ Nationalities, Sch Sci, Nanning 530006, Peoples R China
[3] Taizhou Univ, Dept Math, Taizhou 225300, Peoples R China
[4] Southeast Univ, Sch Math, Res Ctr Complex Syst & Network Sci, Nanjing 210096, Peoples R China
[5] King Abdulaziz Univ, Dept Math, NAAM Res Grp, Jeddah 21589, Saudi Arabia
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Extended delay feedback; Bifurcation control; Fractional-order; Predator-prey model; BIFURCATION-ANALYSIS; NEURAL-NETWORKS; STABILITY ANALYSIS; HOPF-BIFURCATION; TIME-DELAY; MODEL; SYNCHRONIZATION; DISCRETE; DISSIPATIVITY; DYNAMICS;
D O I
10.1016/j.physa.2019.123127
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper showcases the bifurcation control of a delayed fractional predator-prey system via ingenious extended delayed feedback methodology. The gestation delay acts as a bifurcation parameter to decide the bifurcation point of the controlled system. Then it reflects that bifurcation occurs upon eliminating the devised controller. Besides, the impact of fractional orders, feedback gain and extended delay on the bifurcation point is exquisitely explored. It hints that bifurcation emergence can be efficaciously handicapped by modulating fractional order, feedback gain and extended feedback delay. The efficiency of the developed control scheme is neatly checked by simulations results. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Delayed feedback control of fractional-order chaotic systems
    Gjurchinovski, A.
    Sandev, T.
    Urumov, V.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (44)
  • [2] Bifurcation control of a fractional-order PD control strategy for a delayed fractional-order prey–predator system
    Lu Lu
    Chengdai Huang
    Xinyu Song
    The European Physical Journal Plus, 138
  • [3] Numerical simulation of the fractional-order control system
    Cai X.
    Liu F.
    J. Appl. Math. Comp., 2007, 1-2 (229-241): : 229 - 241
  • [4] NUMERICAL SIMULATION OF THE FRACTIONAL-ORDER CONTROL SYSTEM
    Cai, X.
    Liu, F.
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2007, 23 (1-2) : 229 - 241
  • [5] Fractional-order feedback control of a poorly damped system
    Chevalier, Amelie
    Copot, Cosmin
    Copot, Dana
    Ionescu, Clara M.
    De Keyser, Robin
    2014 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION, QUALITY AND TESTING, ROBOTICS, 2014,
  • [6] A COMPARATIVE STUDY ON CHAOS CONTROL IN A FRACTIONAL-ORDER ROSSLER SYSTEM AND ITS TIME DELAYED FEEDBACK CONTROL SYSTEM
    Wang, Yuanyuan
    Li, Jiawen
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2024, 2024
  • [7] Bifurcation control of a fractional-order PD control strategy for a delayed fractional-order prey-predator system
    Lu, Lu
    Huang, Chengdai
    Song, Xinyu
    EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (01):
  • [8] Generalized fractional-order time-delayed feedback control and synchronization designs for a class of fractional-order chaotic systems
    Soukkou, Ammar
    Boukabou, Abdelkrim
    Goutas, Ahcene
    INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2018, 47 (07) : 679 - 713
  • [9] Chaos threshold analysis of Duffing oscillator with fractional-order delayed feedback control
    Shaofang Wen
    Hao Qin
    Yongjun Shen
    Jiangchuan Niu
    The European Physical Journal Special Topics, 2022, 231 : 2183 - 2197
  • [10] Chaos threshold analysis of Duffing oscillator with fractional-order delayed feedback control
    Wen, Shaofang
    Qin, Hao
    Shen, Yongjun
    Niu, Jiangchuan
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2022, 231 (11-12): : 2183 - 2197