Optical solitary waves in the higher order nonlinear Schrodinger equation

被引:378
|
作者
Gedalin, M [1 ]
Scott, TC [1 ]
Band, YB [1 ]
机构
[1] BEN GURION UNIV NEGEV,DEPT PHYS,IL-84105 BEER SHEVA,ISRAEL
关键词
D O I
10.1103/PhysRevLett.78.448
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study solitary wave solutions of the higher order nonlinear Schrodinger equation for the propagation of short light pulses in an optical fiber. Using a scaling transformation we reduce the equation to a two-parameter canonical form. Solitary wave (l-soliton) solutions always exist provided easily met inequality constraints on the parameters in the equation are satisfied. Conditions for the existence of N-soliton solutions (N greater than or equal to 2) are determined; when these conditions are met the equation becomes the modified Korteweg-de Vries equation. A proper subset of these conditions meet the Painleve plausibility conditions for integrability.
引用
收藏
页码:448 / 451
页数:4
相关论文
共 50 条
  • [21] Rogue Waves of the Higher-Order Dispersive Nonlinear Schrodinger Equation
    Wang Xiao-Li
    Zhang Wei-Guo
    Zhai Bao-Guo
    Zhang Hai-Qiang
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2012, 58 (04) : 531 - 538
  • [22] Higher-Order Rogue Waves for a Fifth-Order Dispersive Nonlinear Schrodinger Equation in an Optical Fibre
    Wang, Qi-Min
    Gao, Yi-Tian
    Su, Chuan-Qi
    Shen, Yu-Jia
    Feng, Yu-Jie
    Xue, Long
    [J]. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2015, 70 (05): : 365 - 374
  • [23] Evolution of optical solitary waves in a generalized nonlinear Schrodinger equation with variable coefficients
    Wu, Xiao-Fei
    Hua, Guo-Sheng
    Ma, Zheng-Yi
    [J]. NONLINEAR DYNAMICS, 2012, 70 (03) : 2259 - 2267
  • [24] Cnoidal and solitary wave solutions of the coupled higher order nonlinear Schrodinger equation in nonlinear optics
    Porsezian, K.
    Kalithasan, B.
    [J]. CHAOS SOLITONS & FRACTALS, 2007, 31 (01) : 188 - 196
  • [25] Conversions and interactions of the nonlinear waves in a generalized higher-order nonlinear Schrodinger equation
    Cao, Bo
    Zhang, Huan
    [J]. OPTIK, 2018, 158 : 112 - 117
  • [26] Optical rogue waves in the generalized inhomogeneous higher-order nonlinear Schrodinger equation with modulating coefficients
    Yan, Zhenya
    Dai, Chaoqing
    [J]. JOURNAL OF OPTICS, 2013, 15 (06)
  • [27] Stability of Solitary Waves for the Nonlinear Derivative Schrodinger Equation
    郭柏灵
    吴雅萍
    [J]. 数学进展, 1993, (05) : 473 - 475
  • [28] Evolution of solitary waves for a perturbed nonlinear Schrodinger equation
    Hoseini, S. M.
    Marchant, T. R.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (12) : 3642 - 3651
  • [29] Stability of solitary waves for derivative nonlinear Schrodinger equation
    Colin, Mathieu
    Ohta, Masahito
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2006, 23 (05): : 753 - 764
  • [30] Optical solitons in monomode fibers with higher order nonlinear Schrodinger equation
    Tariq, Kalim U.
    Younis, Muhammad
    Rizvi, S. T. R.
    [J]. OPTIK, 2018, 154 : 360 - 371