Two-dimensional solitons with hidden and explicit vorticity in bimodal cubic-quintic media

被引:33
|
作者
Desyatnikov, AS [1 ]
Mihalache, D
Mazilu, D
Malomed, BA
Denz, C
Lederer, F
机构
[1] Australian Natl Univ, Res Sch Phys Sci & Engn, Nonlinear Phys Ctr, Canberra, ACT 0200, Australia
[2] Australian Natl Univ, Res Sch Phys Sci & Engn, Ctr Ultrahigh Bandwidth Devices Opt Syst, Canberra, ACT 0200, Australia
[3] Inst Atom Phys, Dept Theoret Phys, R-76900 Bucharest, Romania
[4] Univ Jena, Inst Solid State Theory & Theoret Opt, D-07743 Jena, Germany
[5] Tel Aviv Univ, Fac Engn, Sch Elect Engn, Dept Interdisciplinary Studies, IL-69978 Tel Aviv, Israel
[6] Univ Munster, Inst Appl Phys, D-48149 Munster, Germany
来源
PHYSICAL REVIEW E | 2005年 / 71卷 / 02期
关键词
D O I
10.1103/PhysRevE.71.026615
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We demonstrate that two-dimensional two-component bright solitons of an annular shape, carrying vorticities (m,+/- m) in the components, may be stable in media with the cubic-quintic nonlinearity, including the hidden-vorticity (HV) solitons of the type (m,-m), whose net vorticity is zero. Stability regions for the vortices of both (m,+/- m) types are identified for m=1, 2, and 3, by dint of the calculation of stability eigenvalues, and in direct simulations. In addition to the well-known symmetry-breaking (external) instability, which splits the ring soliton into a set of fragments flying away in tangential directions, we report two new scenarios of the development of weak instabilities specific to the HV solitons. One features charge flipping, with the two components exchanging angular momentum and periodically reversing the sign of their spins. The composite soliton does not directly split in this case; therefore, we identify such instability as an intrinsic one. Eventually, the soliton splits, as weak radiation loss drives it across the border of the ordinary strong (external) instability. Another scenario proceeds through separation of the vortex cores in the two components, each individual core moving toward the outer edge of the annular soliton. After expulsion of the cores, there remains a zero-vorticity breather with persistent internal vibrations.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Two-dimensional solitons in conservative and parity-time-symmetric triple-core waveguides with cubic-quintic nonlinearity
    Feijoo, David
    Zezyulin, Dmitry A.
    Konotop, Vladimir V.
    PHYSICAL REVIEW E, 2015, 92 (06):
  • [32] Interactions between two-dimensional solitons in the diffractive-diffusive Ginzburg-Landau equation with the cubic-quintic nonlinearity
    Wainblat, George
    Malomed, Boris A.
    PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (14) : 1143 - 1151
  • [33] Exact solutions of a two-dimensional cubic-quintic discrete nonlinear Schrodinger equation
    Khare, Avinash
    Rasmussen, Kim O.
    Samuelsen, Mogens R.
    Saxena, Avadh
    PHYSICA SCRIPTA, 2011, 84 (06)
  • [34] Bistable Helmholtz solitons in cubic-quintic materials
    Christian, J. M.
    McDonald, G. S.
    Chamorro-Posada, P.
    PHYSICAL REVIEW A, 2007, 76 (03):
  • [35] Bistable guided solitons in the cubic-quintic medium
    Gisin, BV
    Driben, R
    Malomed, BA
    JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2004, 6 (05) : S259 - S264
  • [36] Stability of vortex solitons in the cubic-quintic model
    Malomed, BA
    Crasovan, LC
    Mihalache, D
    PHYSICA D-NONLINEAR PHENOMENA, 2002, 161 (3-4) : 187 - 201
  • [37] Propagating properties of spatial solitons in the competing nonlocal cubic-quintic nonlinear media
    Huang Guang-Qiao
    Lin Ji
    ACTA PHYSICA SINICA, 2017, 66 (05)
  • [38] Dynamics of localized and nonlocalized optical vortex solitons in cubic-quintic nonlinear media
    Berezhiani, VI
    Skarka, V
    Aleksic, NB
    PHYSICAL REVIEW E, 2001, 64 (05):
  • [39] Multicore vortex solitons in cubic-quintic nonlinear media with a Bessel lattice potential
    Wu, Di
    Li, Junhao
    Gao, Xi
    Shi, Yi
    Zhao, Yuan
    Dong, Liangwei
    Malomed, Boris A.
    Zhu, Ni
    Xu, Siliu
    CHAOS SOLITONS & FRACTALS, 2025, 192
  • [40] Multistable solitons in higher-dimensional cubic-quintic nonlinear Schrodinger lattices
    Chong, C.
    Carretero-Gonzalez, R.
    Malomed, B. A.
    Kevrekidis, P. G.
    PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (02) : 126 - 136