Distribution of zeros in the rough geometry of fluctuating interfaces

被引:5
|
作者
Zamorategui, Arturo L. [1 ,2 ]
Lecomte, Vivien [1 ,2 ]
Kolton, Alejandro B. [3 ,4 ]
机构
[1] Univ Paris 06, UMR CNRS 7599, Lab Probabilites & Modeles Aleatoires, F-75013 Paris, France
[2] Univ Paris Diderot, F-75013 Paris, France
[3] CONICET Ctr Atom Bariloche, RA-8400 San Carlos De Bariloche, Argentina
[4] Inst Balseiro UNCu, RA-8400 San Carlos De Bariloche, Argentina
关键词
AXIS-CROSSING INTERVALS; PERSISTENCE; EXPONENTS; DYNAMICS;
D O I
10.1103/PhysRevE.93.042118
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study numerically the correlations and the distribution of intervals between successive zeros in the fluctuating geometry of stochastic interfaces, described by the Edwards-Wilkinson equation. For equilibrium states we find that the distribution of interval lengths satisfies a truncated Sparre-Andersen theorem. We show that boundary-dependent finite-size effects induce nontrivial correlations, implying that the independent interval property is not exactly satisfied in finite systems. For out-of-equilibrium nonstationary states we derive the scaling law describing the temporal evolution of the density of zeros starting from an uncorrelated initial condition. As a by-product we derive a general criterion of the von Neumann's type to understand how discretization affects the stability of the numerical integration of stochastic interfaces. We consider both diffusive and spatially fractional dynamics. Our results provide an alternative experimental method for extracting universal information of fluctuating interfaces such as domain walls in thin ferromagnets or ferroelectrics, based exclusively on the detection of crossing points.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] FLUCTUATING INTERFACES IN MICROEMULSION AND SPONGE PHASES
    GOMPPER, G
    GOOS, J
    PHYSICAL REVIEW E, 1994, 50 (02): : 1325 - 1335
  • [22] Fluctuating hydrodynamic interfaces: Theory and simulation
    Flekkoy, EG
    Rothman, DH
    PHYSICAL REVIEW E, 1996, 53 (02) : 1622 - 1643
  • [23] Fluctuating Interfaces Subject to Stochastic Resetting
    Gupta, Shamik
    Majumdar, Satya N.
    Schehr, Gregory
    PHYSICAL REVIEW LETTERS, 2014, 112 (22)
  • [25] Airy distribution function: From the area under a brownian excursion to the maximal height of fluctuating interfaces
    Majumdar, SN
    Comtet, A
    JOURNAL OF STATISTICAL PHYSICS, 2005, 119 (3-4) : 777 - 826
  • [26] Airy Distribution Function: From the Area Under a Brownian Excursion to the Maximal Height of Fluctuating Interfaces
    Satya N. Majumdar
    Alain Comtet
    Journal of Statistical Physics, 2005, 119 : 777 - 826
  • [27] SOME RESULTS ON THE GEOMETRY OF THE ZEROS OF POLYNOMIALS
    Diaz-Barrero, J. L.
    Egozcue, J. J.
    Popescu, P. G.
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2011, 12 (01): : 16 - 21
  • [28] Profile and width of rough interfaces
    Müller, M
    Münster, G
    JOURNAL OF STATISTICAL PHYSICS, 2005, 118 (3-4) : 669 - 686
  • [29] CONTACT THEOREMS FOR ROUGH INTERFACES
    BLUM, L
    JOURNAL OF STATISTICAL PHYSICS, 1994, 75 (5-6) : 971 - 980
  • [30] Profile and Width of Rough Interfaces
    Melanie Müller
    Gernot Münster
    Journal of Statistical Physics, 2005, 118 : 669 - 686