Estimation of the Hurst parameter from discrete noisy data

被引:26
|
作者
Gloter, Arnaud [1 ]
Hoffmann, Marc [1 ]
机构
[1] Univ Marne La Vallee, CNRS, UMR 8050, Lab Anal & Math Appl, F-77454 Champs Sur Marne, France
来源
ANNALS OF STATISTICS | 2007年 / 35卷 / 05期
关键词
scaling exponent; noisy data; high frequency data; fractional Brownian motion; adaptive estimation of quadratic functionals; wavelet methods;
D O I
10.1214/009053607000000316
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We estimate the Hurst parameter H of a fractional Brownian motion from discrete noisy data observed along a high frequency sampling scheme. The presence of systematic experimental noise makes recovery of H more difficult since relevant information is mostly contained in the high frequencies of the signal. We quantify the difficulty of the statistical problem in a min-max sense: we prove that the rate n(-1/(4H+2)) is optimal for estimating H and propose rate optimal estimators based on adaptive estimation of quadratic functionals.
引用
收藏
页码:1947 / 1974
页数:28
相关论文
共 50 条
  • [21] The accuracy of parameter estimation from noisy data, with application to resonance peak estimation in distributed Brillouin sensing
    Pannell, CN
    Dhliwayo, J
    Webb, DJ
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 1998, 9 (01) : 50 - 57
  • [22] Neural Partial Differentiation Based Nonlinear Parameter Estimation from Noisy Flight Data
    Mohamed, Majeed
    Madhavan, G.
    Manikantan, R.
    Priya, P. S. Lal
    [J]. 2018 THE 9TH ASIA CONFERENCE ON MECHANICAL AND AEROSPACE ENGINEERING, 2019, 1215
  • [23] Algebraic parameter estimation of a multi-sinusoidal waveform signal from noisy data
    Ushirobira, Rosane
    Perruquetti, Wilfrid
    Mboup, Mamadou
    Fliess, Michel
    [J]. 2013 EUROPEAN CONTROL CONFERENCE (ECC), 2013, : 1902 - 1907
  • [24] Wavelet estimation for the Hurst parameter in stable processes
    Stoev, S
    Taqqu, MS
    [J]. PROCESSES WITH LONG-RANGE CORRELATIONS: THEORY AND APPLICATIONS, 2003, 621 : 61 - 87
  • [25] Estimation of the Hurst parameter in some fractional processes
    Salomon, Luis A.
    Fort, Jean-Claude
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2013, 83 (03) : 542 - 554
  • [26] Using Digital Filtration for Hurst Parameter Estimation
    Prochaska, Jan
    Vargic, Radoslav
    [J]. RADIOENGINEERING, 2009, 18 (02) : 238 - 241
  • [27] Based on Hurst parameter estimation DoS detection
    Heng, Shu
    [J]. SENSORS, MEASUREMENT AND INTELLIGENT MATERIALS, PTS 1-4, 2013, 303-306 : 2325 - 2328
  • [28] Wavelet packet based Hurst parameter estimation
    Cheng, H
    Shao, ZQ
    Fang, YQ
    [J]. 8TH WORLD MULTI-CONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL III, PROCEEDINGS: COMMUNICATION AND NETWORK SYSTEMS, TECHNOLOGIES AND APPLICATIONS, 2004, : 276 - 281
  • [29] ESTIMATION OF HURST PARAMETER AND MINIMUM VARIANCE SPECTRUM
    Kim, Joo-Mok
    [J]. KOREAN JOURNAL OF MATHEMATICS, 2018, 26 (02): : 155 - 166
  • [30] Comparison of Daubechies wavelets for Hurst parameter estimation
    Ciftlikli, Cebrail
    Gezer, Ali
    [J]. TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2010, 18 (01) : 117 - 128