A new gaussian noise filter based on interval type-2 fuzzy logic systems

被引:9
|
作者
Wang, ST [1 ]
Chung, FL
Li, YY
Hu, DW
Wu, XS
机构
[1] Hong Kong Polytech Univ, Dept Comp, Hong Kong, Hong Kong, Peoples R China
[2] So Yangtze Univ, Sch Informat Engn, Wuxi, Peoples R China
[3] Natl Def Univ Sci & Technol, Sch Automat, Changsha, Peoples R China
关键词
image-processing; filter; Gaussian noise; type-2 fuzzy sets; fuzzy logic systems; neural networks;
D O I
10.1007/s00500-004-0362-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a new selective feedback fuzzy neural network (SFNN) based on interval type-2 fuzzy logic systems is introduced by partitioning input and output spaces and based upon which a new FLS filter is further studied. The experimental results demonstrate that this new FLS filter outperforms other filters (e.g. the mean filter and the Wiener filter) in suppressing Gaussian noise and maintaining the original structure of an image.
引用
收藏
页码:398 / 406
页数:9
相关论文
共 50 条
  • [31] Hybrid learning algorithm for interval type-2 fuzzy logic systems
    Departamento de Ingeniería, Eléctrica y Electrónica, Instituto Tecnológico de Nuevo Léon, Mexico
    不详
    [J]. Control Intell Syst, 2006, 3 (206-215):
  • [32] Towards General Forms of Interval Type-2 Fuzzy Logic Systems
    Ruiz, Gonzalo
    Pomares, Hector
    Rojas, Ignacio
    Hagras, Hani
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2016, : 1216 - 1223
  • [33] On the Stability of Interval Type-2 TSK Fuzzy Logic Control Systems
    Biglarbegian, Mohammad
    Melek, William W.
    Mendel, Jerry M.
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2010, 40 (03): : 798 - 818
  • [34] UNIVERSAL IMAGE NOISE REMOVAL FILTER BASED ON TYPE-2 FUZZY LOGIC SYSTEM AND QPSO
    Zhai, Daoyuan
    Hao, Minshen
    Mendel, Jerry
    [J]. INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2012, 20 : 207 - 232
  • [35] A new interval type-2 fuzzy controller for stabilization of interval type-2 T-S fuzzy systems
    Zhao, Tao
    Xiao, Jian
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2015, 352 (04): : 1627 - 1648
  • [36] Consequent-oriented fuzzy inference: For interval type-2 fuzzy logic systems
    [J]. Yue, J.-M. (yjm@mail.nankai.edu.cn), 1600, South China University of Technology (30):
  • [37] Extended Kalman Filter-based Learning of Interval Type-2 Intuitionistic Fuzzy Logic System
    Eyoh, Imo
    John, Robert
    De Maere, Geert
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2017, : 728 - 733
  • [38] Type-2 fuzzy logic systems
    Karnik, NN
    Mendel, JM
    Liang, QL
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 1999, 7 (06) : 643 - 658
  • [39] Type-2 fuzzy logic systems
    Univ of Southern California, Los Angeles, United States
    [J]. IEEE Trans Fuzzy Syst, 6 (643-658):
  • [40] An interval type-2 fuzzy logic based strategy for microgrid protection
    Bukhari, Syed Basit Ali
    Haider, Raza
    Zaman, Muhammad Saeed Uz
    Oh, Yun-Sik
    Cho, Gyu-Jung
    Kim, Chul-Hwan
    [J]. INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2018, 98 : 209 - 218