Testing multivariate distributions in GARCH models

被引:26
|
作者
Bai, Jushan [1 ,2 ]
Chen, Zhihong [3 ]
机构
[1] NYU, Dept Econ, New York, NY 10012 USA
[2] Tsinghua Univ, Sch Econ & Management, Beijing 100084, Peoples R China
[3] Univ Int Business & Econ, Sch Int Trade & Econ, Beijing 100029, Peoples R China
基金
美国国家科学基金会;
关键词
K-transformation; Brownian motion; distribution-free tests; multivariate normality; multivariate t; GARCH;
D O I
10.1016/j.jeconom.2007.08.012
中图分类号
F [经济];
学科分类号
02 ;
摘要
In this paper, we consider testing distributional assumptions in multivariate GARCH models based on empirical processes. Using the fact that joint distribution carries the same amount of information as the marginal together with conditional distributions, we first transform the multivariate data into univariate independent data based on the marginal and conditional cumulative distribution functions. We then apply the Khmaladze's martingale transformation (K-transformation) to the empirical process in the presence of estimated parameters. The K-transformation eliminates the effect of parameter estimation, allowing a distribution-free test statistic to be constructed. We show that the K-transformation takes a very simple form for testing multivariate normal and multivariate t-distributions. The procedure is applied to a multivariate financial time series data set. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:19 / 36
页数:18
相关论文
共 50 条
  • [21] TESTING THE STRUCTURE OF CONDITIONAL CORRELATIONS IN MULTIVARIATE GARCH MODELS: A GENERALIZED CROSS-SPECTRUM APPROACH
    McCloud, Nadine
    Hong, Yongmiao
    [J]. INTERNATIONAL ECONOMIC REVIEW, 2011, 52 (04) : 991 - 1037
  • [22] Comparison of GARCH Models based on Different Distributions
    Gao, Yan
    Zhang, Chengjun
    Zhang, Liyan
    [J]. JOURNAL OF COMPUTERS, 2012, 7 (08) : 1967 - 1973
  • [23] CURRENCY HEDGING STRATEGIES USING MULTIVARIATE GARCH MODELS
    Mohd, Muhammad Azri
    Nawawi, Abdul Halim Mohd
    Hussin, Siti Aida Sheikh
    Ramdzan, Siti Nurul Ain
    [J]. JURNAL TEKNOLOGI, 2016, 78 (4-4): : 121 - 128
  • [24] Evaluating multivariate GARCH models in the Nordic electricity markets
    Malo, P
    Kanto, A
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2006, 35 (01) : 117 - 148
  • [25] Robust ranking of multivariate GARCH models by problem dimension
    Caporin, Massimiliano
    McAleer, Michael
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 76 : 172 - 185
  • [26] Stationarity and geometric ergodicity of BEKK multivariate GARCH models
    Boussama, Farid
    Fuchs, Florian
    Stelzer, Robert
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2011, 121 (10) : 2331 - 2360
  • [27] Bayesian inference of multivariate-GARCH-BEKK models
    Livingston, G. C. Jr Jr
    Nur, Darfiana
    [J]. STATISTICAL PAPERS, 2023, 64 (05) : 1749 - 1774
  • [28] QML ESTIMATION OF A CLASS OF MULTIVARIATE ASYMMETRIC GARCH MODELS
    Francq, Christian
    Zakoeian, Jean-Michel
    [J]. ECONOMETRIC THEORY, 2012, 28 (01) : 179 - 206
  • [29] Robust M-estimation of multivariate GARCH models
    Boudt, Kris
    Croux, Christophe
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (11) : 2459 - 2469
  • [30] STATISTICAL INFERENCE FOR MULTIVARIATE RESIDUAL COPULA OF GARCH MODELS
    Chan, Ngai-Hang
    Chen, Jian
    Chen, Xiaohong
    Fan, Yanqin
    Peng, Liang
    [J]. STATISTICA SINICA, 2009, 19 (01) : 53 - 70