Fast multipole method for multivariable integrals

被引:3
|
作者
Bokanowski, O
Lemou, M
机构
[1] Univ Paris 06, Lab Jacques Louis Lions, UMR 7598, F-75013 Paris, France
[2] Univ Toulouse 3, CNRS, UMR 5640, UFR MIG,MIP, F-31062 Toulouse, France
关键词
fast multipole method; multivariable integrals; multiparticle integrals; multidimensional integrals; multidimensional sums; correlated sums; O(N) algorithm; molecular quantum physics;
D O I
10.1137/S0036142902409690
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a fast numerical algorithm to evaluate a class of multivariable integrals. A direct numerical evaluation of these integrals costs N-m, where m is the number of variables and N is the number of the quadrature points for each variable. For m = 2 and m = 3 and for only one-dimensional variables, we present an algorithm which is able to reduce this cost from N-m to a cost of the order of O((-log epsilon)(mu m) N), where epsilon is the desired accuracy and mu(m) is a constant that depends only on m. Then, we make some comments about possible extensions of such algorithms to number of variables m >= 4 and to higher dimensions. This recursive algorithm can be viewed as an extension of "fast multipole methods" to situations where the interactions between particles are more complex than the standard case of binary interactions. Numerical tests illustrating the efficiency and the limitation of this method are presented.
引用
收藏
页码:2098 / 2117
页数:20
相关论文
共 50 条
  • [41] Fractional tiers in fast multipole method calculations
    White, CA
    HeadGordon, M
    [J]. CHEMICAL PHYSICS LETTERS, 1996, 257 (5-6) : 647 - 650
  • [42] The black-box fast multipole method
    Fong, William
    Darve, Eric
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (23) : 8712 - 8725
  • [43] Adaptive spatial decomposition in fast multipole method
    Zhang, J. M.
    Tanaka, Masa.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 226 (01) : 17 - 28
  • [44] An Inverse Fast Multipole Method for Imaging Applications
    Alvarez, Yuri
    Martinez, Jose Angel
    Las-Heras, Fernando
    Rappaport, Carey M.
    [J]. IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2011, 10 : 1259 - 1262
  • [45] APPLICATION OF FAST MULTIPOLE METHOD FOR PARALLEL MUFFLERS
    Wu, C-H
    Wang, C-N
    [J]. JOURNAL OF MECHANICS, 2012, 28 (01) : 153 - 162
  • [46] The fast multipole method for PEEC circuits analysis
    Antonini, G
    [J]. 2002 IEEE INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY, VOLS 1 AND 2, SYMPOSIUM RECORD, 2002, : 446 - 451
  • [47] An error-controlled fast multipole method
    Dachsel, Holger
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (24):
  • [48] THE FAST MULTIPOLE METHOD FOR GRIDLESS PARTICLE SIMULATION
    AMBROSIANO, J
    GREENGARD, L
    ROKHLIN, V
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 1988, 48 (01) : 117 - 125
  • [49] Accelerating Brain Simulations with the Fast Multipole Method
    Noettgen, Hannah
    Czappa, Fabian
    Wolf, Felix
    [J]. EURO-PAR 2022: PARALLEL PROCESSING, 2022, 13440 : 387 - 402
  • [50] Geometrically Based Preconditioner for the Fast Multipole Method
    Araujo, M. G.
    Bertolo, J. M.
    Landesa, L.
    Taboada, J. M.
    Obelleiro, F.
    Rodriguez, J. L.
    [J]. 2009 3RD EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION, VOLS 1-6, 2009, : 113 - +