On an infinite number of quadratures to evaluate beam shape coefficients in generalized Lorenz-Mie theory and the extended boundary condition method for structured EM beams

被引:15
|
作者
Gouesbet, Gerard [1 ,2 ]
Ambrosio, Leonardo Andre [3 ]
Lock, James A. [4 ]
机构
[1] Normandie Univ, CNRS Univ, CORIA UMR 6614, F-76800 Caen, France
[2] INSA Rouen Campus Univ Madrillet St Etienne Du Ro, F-76800 St Etienne Du Rouvray, France
[3] Univ Sao Paulo, Sao Carlos Sch Engn, Dept Elect & Comp Engn, 400 Trabalhador Sao Carlense Ave, BR-13566590 Sao Paulo, SP, Brazil
[4] Cleveland State Univ, Dept Phys, Cleveland, OH 44115 USA
基金
巴西圣保罗研究基金会;
关键词
Generalized Lorenz-Mie theory; Extended boundary condition method; T-Matrix; Beam shape coefficients; Vector spherical wave functions; VECTOR FROZEN WAVES; LIGHT-SCATTERING; GAUSSIAN-BEAM; LOCALIZED APPROXIMATIONS; EXPANSION; ORDER; SPHERE; AXIS; SPECTRUM; MODELS;
D O I
10.1016/j.jqsrt.2019.106779
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
When dealing with light scattering theories such as the T-matrix methods for structured laser beams, e.g. Generalized Lorenz-Mie Theory (GLMT) or the Extended Boundary Condition Method (EBCM), EM fields are expanded over a set of Vector Spherical Wave Functions (VSWFs) involving spherical Bessel functions, with expansion coefficients expressed in terms of Beam Shape Coefficients (BSCs). Although spherical Bessel functions are orthogonal over the range (-infinity, +infinity), the GLMT may be expressed using a non-orthogonal set of spherical Bessel functions defined over (0, +infinity), allowing one to generate an infinite number of quadratures for evaluating the BSCs. This paper points out the difference between orthogonal and non-orthogonal spherical Bessel functions, establishes the infinite number of quadratures and discusses its properties. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:4
相关论文
共 23 条
  • [1] Laboratory determination of beam-shape coefficients for use in generalized Lorenz-Mie theory
    Polaert, H
    Gouesbet, G
    Gréhan, G
    [J]. APPLIED OPTICS, 2001, 40 (10) : 1699 - 1706
  • [2] Blowing-ups of beam shape coefficients of Gaussian beams using finite series in generalized Lorenz-Mie theory
    Votto, Luiz Felipe
    Gouesbet, Gerard
    Ambrosio, Leonardo Andre
    [J]. JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2023, 311
  • [3] Measurement of beam-shape coefficients in the generalized Lorenz-Mie theory for the on-axis case
    Polaert, H
    Gouesbet, G
    Grehan, G
    [J]. APPLIED OPTICS, 1998, 37 (21): : 5005 - 5013
  • [4] Discussion of two quadrature methods of evaluating beam-shape coefficients in generalized Lorenz-Mie theory
    Gouesbet, G
    Letellier, C
    Ren, KF
    Grehan, G
    [J]. APPLIED OPTICS, 1996, 35 (09): : 1537 - 1542
  • [5] Ince-Gaussian beams in the generalized Lorenz-Mie theory through finite series Laguerre-Gaussian beam shape coefficients
    Votto, Luiz Felipe
    Chafiq, Abdelghani
    Gouesbet, Gerard
    Ambrosio, Leonardo Andre
    Belafhal, Abdelmajid
    [J]. JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2023, 302
  • [6] RIGOROUS JUSTIFICATION OF THE LOCALIZED APPROXIMATION TO THE BEAM-SHAPE COEFFICIENTS IN GENERALIZED LORENZ-MIE THEORY .1. ON-AXIS BEAMS
    LOCK, JA
    GOUESBET, G
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1994, 11 (09): : 2503 - 2515
  • [7] EVALUATION OF LASER-SHEET BEAM SHAPE COEFFICIENTS IN GENERALIZED LORENZ-MIE THEORY BY USE OF A LOCALIZED APPROXIMATION
    REN, KF
    GREHAN, G
    GOUESBET, G
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1994, 11 (07): : 2072 - 2079
  • [8] Hermite-Gaussian beams in the generalized Lorenz-Mie theory through finite-series Laguerre-Gaussian beam shape coefficients
    Votto, Luiz Felipe
    Chafiq, Abdelghani
    Belafhal, Abdelmajid
    Gouesbet, Gerard
    Ambrosio, Leonardo Andre
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2022, 39 (04) : 1027 - 1032
  • [9] LOCALIZED APPROXIMATION OF GENERALIZED LORENZ-MIE THEORY - FASTER ALGORITHM FOR COMPUTATIONS OF BEAM SHAPE COEFFICIENTS, G(M)N
    REN, KF
    GREHAN, G
    GOUESBET, G
    [J]. PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, 1992, 9 (02) : 144 - 150
  • [10] Measurements of beam shape coefficients in generalized Lorenz-Mie theory and the density-matrix approach .1. Measurements
    Gouesbet, G
    [J]. PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, 1997, 14 (01) : 12 - 20