Laboratory determination of beam-shape coefficients for use in generalized Lorenz-Mie theory

被引:8
|
作者
Polaert, H [1 ]
Gouesbet, G
Gréhan, G
机构
[1] Inst Natl Sci Appl Rouen, CNRS, UMR 6614, Lab Energet Syst & Proc, F-76130 Mont St Aignan, France
[2] Univ Rouen, F-76130 Mont St Aignan, France
关键词
D O I
10.1364/AO.40.001699
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The use of the generalized Lorenz-Mie theory (GLMT) requires knowledge of beam-shape coefficients (BSC's) that describe the beam illuminating a spherical scatterer. We theoretically demonstrated that these BSC's can be determined from an actual beam in the laboratory. We demonstrate the effectiveness of our theoretical proposal by determining BSC's for a He-Ne laser beam focused to a diameter of a few micrometers. Once these BSC's are determined, the electromagnetic fields of the illuminating beam may be evaluated. By relying on the GLMT, we can also determine all properties of the interaction between beam and scatterer, including mechanical effects (radiation pressures and torques). (C) 2001 Optical Society of America.
引用
收藏
页码:1699 / 1706
页数:8
相关论文
共 50 条
  • [1] Measurement of beam-shape coefficients in the generalized Lorenz-Mie theory for the on-axis case
    Polaert, H
    Gouesbet, G
    Grehan, G
    [J]. APPLIED OPTICS, 1998, 37 (21): : 5005 - 5013
  • [2] Discussion of two quadrature methods of evaluating beam-shape coefficients in generalized Lorenz-Mie theory
    Gouesbet, G
    Letellier, C
    Ren, KF
    Grehan, G
    [J]. APPLIED OPTICS, 1996, 35 (09): : 1537 - 1542
  • [3] Computation of the beam-shape coefficients in the generalized Lorenz-Mie theory by using the translational addition theorem for spherical vector wave functions
    Doicu, A
    Wriedt, T
    [J]. APPLIED OPTICS, 1997, 36 (13): : 2971 - 2978
  • [4] RIGOROUS JUSTIFICATION OF THE LOCALIZED APPROXIMATION TO THE BEAM-SHAPE COEFFICIENTS IN GENERALIZED LORENZ-MIE THEORY .1. ON-AXIS BEAMS
    LOCK, JA
    GOUESBET, G
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1994, 11 (09): : 2503 - 2515
  • [5] Alternative angular spectrum derivation of beam-shape coefficients of generalized Lorenz-Mie theory: scattering of light coming from two pinholes
    Alejandro Gonzaga-Galeana, J.
    Zurita-Sanchez, Jorge R.
    [J]. JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2018, 32 (09) : 1106 - 1125
  • [6] EVALUATION OF LASER-SHEET BEAM SHAPE COEFFICIENTS IN GENERALIZED LORENZ-MIE THEORY BY USE OF A LOCALIZED APPROXIMATION
    REN, KF
    GREHAN, G
    GOUESBET, G
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1994, 11 (07): : 2072 - 2079
  • [7] The generalized Lorenz-Mie scattering theory and algorithm of Gaussian beam
    Bi Yi-ming
    Wang Lian-fen
    Li Yu-xin
    Zhao Jian-gang
    [J]. INTERNATIONAL SYMPOSIUM ON PHOTOELECTRONIC DETECTION AND IMAGING 2011: SPACE EXPLORATION TECHNOLOGIES AND APPLICATIONS, 2011, 8196
  • [8] Generalized Lorenz-Mie theory and applications
    Lock, James A.
    Gouesbet, Gerard
    [J]. JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2009, 110 (11): : 800 - 807
  • [9] GENERALIZED LORENZ-MIE THEORY AND APPLICATIONS
    GOUESBET, G
    [J]. PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, 1994, 11 (01) : 22 - 34
  • [10] Blowing-ups of beam shape coefficients of Gaussian beams using finite series in generalized Lorenz-Mie theory
    Votto, Luiz Felipe
    Gouesbet, Gerard
    Ambrosio, Leonardo Andre
    [J]. JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2023, 311