Communication: Explicit construction of functional derivatives in potential-driven density-functional theory

被引:14
|
作者
Gaiduk, Alex P. [1 ]
Staroverov, Viktor N. [1 ]
机构
[1] Univ Western Ontario, Dept Chem, London, ON N6A 5B7, Canada
来源
JOURNAL OF CHEMICAL PHYSICS | 2010年 / 133卷 / 10期
基金
加拿大自然科学与工程研究理事会;
关键词
CORRECT ASYMPTOTIC-BEHAVIOR; KOHN-SHAM POTENTIALS; EXCHANGE-ENERGY; APPROXIMATION; VIRIAL;
D O I
10.1063/1.3483464
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We propose a method for imposing an important exact constraint on model Kohn-Sham potentials, namely, the requirement that they be functional derivatives of functionals of the electron density p. In particular, we show that if a model potential v(r) involves no ingredients other than rho, del rho, and del(2)rho, then the necessary and sufficient condition for v(r) to be a functional derivative is partial derivative v/partial derivative del rho=del(partial derivative v/partial derivative del(2)rho). Integrability conditions of this type can be used to construct functional derivatives without knowing their parent functionals. This opens up possibilities for developing model exchange-correlation potentials that do not lead to unphysical effects common to existing approximations. Application of the technique is illustrated with examples. (c) 2010 American Institute of Physics. [doi:10.1063/1.3483464]
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Combining density-functional theory and density-matrix-functional theory
    Rohr, Daniel R.
    Toulouse, Julien
    Pernal, Katarzyna
    Physical Review A - Atomic, Molecular, and Optical Physics, 2010, 82 (05):
  • [22] Density-functional theory and chemistry
    Parr, RG
    CONDENSED MATTER THEORIES, VOL 15, 2000, 15 : 297 - 302
  • [23] Implicit density-functional theory
    Liu, Bin
    Percus, Jerome K.
    PHYSICAL REVIEW A, 2006, 74 (01):
  • [24] Subsystem density-functional theory
    Jacob, Christoph R.
    Neugebauer, Johannes
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2014, 4 (04) : 325 - 362
  • [25] PSEUDOPOTENTIALS IN DENSITY-FUNCTIONAL THEORY
    HARRIS, J
    JONES, RO
    PHYSICAL REVIEW LETTERS, 1978, 41 (03) : 191 - 194
  • [26] Density-functional theory for plutonium
    Soderlind, Per
    Landa, A.
    Sadigh, B.
    ADVANCES IN PHYSICS, 2019, 68 (01) : 1 - 47
  • [27] Partition density-functional theory
    Elliott, Peter
    Burke, Kieron
    Cohen, Morrel H.
    Wasserman, Adam
    PHYSICAL REVIEW A, 2010, 82 (02):
  • [28] Differentiability in density-functional theory
    Lindgren, I
    Salomonson, S
    ADVANCES IN QUANTUM CHEMISTRY, VOL 43, 2003, 43 : 95 - 117
  • [29] Spin in density-functional theory
    Jacob, Christoph R.
    Reiher, Markus
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2012, 112 (23) : 3661 - 3684
  • [30] SYMMETRY IN DENSITY-FUNCTIONAL THEORY
    GORLING, A
    PHYSICAL REVIEW A, 1993, 47 (04): : 2783 - 2799