The confidence interval method for selecting valid instrumental variables

被引:11
|
作者
Windmeijer, Frank [1 ,2 ,3 ]
Liang, Xiaoran [4 ]
Hartwig, Fernando P. [3 ,5 ]
Bowden, Jack [3 ,6 ]
机构
[1] Univ Oxford, Dept Stat, 24-29 St Giles, Oxford, England
[2] Univ Oxford, Nuffield Coll, Oxford, England
[3] Univ Bristol, MRC Integrat Epidemiol Unit, Bristol, Avon, England
[4] Univ Bristol, Dept Econ, Bristol, Avon, England
[5] Univ Pelotas, Ctr Epidemiol Res, Pelotas, RS, Brazil
[6] Univ Exeter, Coll Med & Hlth, Exeter, Devon, England
基金
英国医学研究理事会; 英国经济与社会研究理事会;
关键词
causal inference; instrumental variables; invalid instruments; MENDELIAN RANDOMIZATION; INVALID INSTRUMENTS; GENERALIZED-METHOD; ESTIMATORS; MODELS;
D O I
10.1111/rssb.12449
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a new method, the confidence interval (CI) method, to select valid instruments from a larger set of potential instruments for instrumental variable (IV) estimation of the causal effect of an exposure on an outcome. Invalid instruments are such that they fail the exclusion conditions and enter the model as explanatory variables. The CI method is based on the CIs of the per instrument causal effects estimates and selects the largest group with all CIs overlapping with each other as the set of valid instruments. Under a plurality rule, we show that the resulting standard IV, or two-stage least squares (2SLS) estimator has oracle properties. This result is the same as for the hard thresholding with voting (HT) method of Guo et al. (Journal of the Royal Statistical Society : Series B, 2018, 80, 793-815). Unlike the HT method, the number of instruments selected as valid by the CI method is guaranteed to be monotonically decreasing for decreasing values of the tuning parameter. For the CI method, we can therefore use a downward testing procedure based on the Sargan (Econometrica, 1958, 26, 393-415) test for overidentifying restrictions and a main advantage of the CI downward testing method is that it selects the model with the largest number of instruments selected as valid that passes the Sargan test.
引用
收藏
页码:752 / 776
页数:25
相关论文
共 50 条
  • [21] Instrumental variables
    Mitchell, Patrick
    [J]. BRITISH JOURNAL OF NEUROSURGERY, 2018, 32 (03) : 229 - 230
  • [22] Instrumental variables
    Buse, A
    [J]. JOURNAL OF ECONOMIC PERSPECTIVES, 2003, 17 (01): : 224 - 226
  • [23] Optimization based on reliability and confidence interval design for the structural-acoustic system with interval probabilistic variables
    Xia, Baizhan
    Yu, Dejie
    [J]. JOURNAL OF SOUND AND VIBRATION, 2015, 336 : 1 - 15
  • [24] The Diagnostic Method of Concrete Dam Monitoring Information Valid Interval
    Qin, Dong
    Zheng, Xueqin
    Wang, Fameng
    Liu, Hezhi
    [J]. VIBRATION, STRUCTURAL ENGINEERING AND MEASUREMENT II, PTS 1-3, 2012, 226-228 : 2072 - 2077
  • [25] A new confidence interval in errors-in-variables model with known error variance
    Yan, Liang
    Wang, Rui
    Xu, Xingzhong
    [J]. JOURNAL OF APPLIED STATISTICS, 2017, 44 (12) : 2204 - 2221
  • [26] A METHOD FOR COMPUTING A LOWER CONFIDENCE INTERVAL FOR SYSTEM RELIABILITY
    BORSTING, JR
    WOODS, WM
    [J]. SIAM REVIEW, 1966, 8 (02) : 259 - &
  • [27] A NON-PARAMETRIC CONFIDENCE-INTERVAL METHOD
    RACINEPOON, A
    GRIEVE, AP
    [J]. EUROPEAN JOURNAL OF CLINICAL PHARMACOLOGY, 1985, 29 (03) : 379 - 380
  • [28] Confidence Interval
    Whitcher, Ursula
    [J]. JOURNAL OF HUMANISTIC MATHEMATICS, 2012, 2 (02): : 152 - 152
  • [29] INSTRUMENTAL AND QUASI-INSTRUMENTAL VARIABLES
    BARTELS, LM
    [J]. AMERICAN JOURNAL OF POLITICAL SCIENCE, 1991, 35 (03) : 777 - 800
  • [30] Confidence Interval
    Kilic, Selim
    [J]. JOURNAL OF MOOD DISORDERS, 2015, 5 (02) : 92 - 94