The exquisite geometric structure of a central limit theorem

被引:1
|
作者
Puente, CE [1 ]
机构
[1] Univ Calif Davis, Inst Theoret Dynam, Davis, CA 95616 USA
关键词
central limit theorem; fractal interpolation; n-fold symmetric patterns; crystals;
D O I
10.1142/S0218348X03001458
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Universal constructions of univariate and bivariate Gaussian distributions, as transformations of diffuse probability distributions via, respectively, plane- and space-filling fractal interpolating functions and the central limit theorems that they imply, are reviewed. It is illustrated that the construction of the bivariate Gaussian distribution yields exotic kaleidoscopic decompositions of the bell in terms of exquisite geometric structures which include non-trivial crystalline patterns having arbitrary n-fold symmetry, for any n > 2. It is shown that these results also hold when fractal interpolating functions are replaced by a more general class of attractors that are not functions.
引用
收藏
页码:39 / 52
页数:14
相关论文
共 50 条
  • [41] ON SADIKOVAS METHOD IN CENTRAL LIMIT THEOREM
    DUNNAGE, JEA
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 1970, 2 (5P1): : 49 - &
  • [42] Stabilizer testing and central limit theorem
    Sun, Wenlong
    Jin, Yuanfeng
    Lu, Gang
    Liu, Yang
    PHYSICAL REVIEW A, 2025, 111 (03)
  • [43] CENTRAL LIMIT THEOREM FOR STATIONARY PROCESSES
    HEYDE, CC
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1974, 30 (04): : 315 - 320
  • [44] CONTINUATION OF CONVERGENCE IN CENTRAL LIMIT THEOREM
    ROSSBERG, HJ
    SIEGEL, G
    TEORIYA VEROYATNOSTEI I YEYE PRIMENIYA, 1975, 20 (04): : 885 - 887
  • [45] CENTRAL LIMIT THEOREM FOR SCATTERING BILLIARDS
    BUNIMOVI.LA
    DOKLADY AKADEMII NAUK SSSR, 1972, 204 (04): : 778 - &
  • [46] Central Limit Theorem and Diophantine Approximations
    Bobkov, Sergey G.
    JOURNAL OF THEORETICAL PROBABILITY, 2018, 31 (04) : 2390 - 2411
  • [47] CENTRAL LIMIT THEOREM FOR MULTIPLICATIVE SYSTEMS
    MORICZ, F
    ACTA SCIENTIARUM MATHEMATICARUM, 1970, 31 (1-2): : 43 - &
  • [48] A Central Limit Theorem for inner functions
    Nicolau, Artur
    Gibert, Odi Soler i
    ADVANCES IN MATHEMATICS, 2022, 401
  • [49] CENTRAL LIMIT THEOREM FOR CARLEMANS EQUATION
    MCKEAN, HP
    ISRAEL JOURNAL OF MATHEMATICS, 1975, 21 (01) : 54 - 92
  • [50] CENTRAL LIMIT THEOREM ON CHEBYSHEV POLYNOMIALS
    Ahn, Young-Ho
    JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2014, 21 (04): : 271 - 279