The heterogeneous multiscale method based on the discontinuous Galerkin method for hyperbolic and parabolic problems

被引:22
|
作者
Chen, SQ [1 ]
E, WN
Shu, CW
机构
[1] Brown Univ, Div Appl Math, Providence, RI 02912 USA
[2] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
来源
MULTISCALE MODELING & SIMULATION | 2005年 / 3卷 / 04期
关键词
heterogeneous multiscale method; homogenization; discontinuous Galerkin method;
D O I
10.1137/040612622
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we develop a discontinuous Galerkin (DG) method, within the framework of the heterogeneous multiscale method (HMM), for solving hyperbolic and parabolic multiscale problems. Hyperbolic scalar equations and systems, as well as parabolic scalar problems, are considered. Error estimates are given for the linear equations, and numerical results are provided for the linear and nonlinear problems to demonstrate the capability of the method.
引用
收藏
页码:871 / 894
页数:24
相关论文
共 50 条
  • [1] THE DISCONTINUOUS GALERKIN METHOD FOR SEMILINEAR PARABOLIC PROBLEMS
    ESTEP, D
    LARSSON, S
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1993, 27 (01): : 35 - 54
  • [2] Multiscale method based on discontinuous Galerkin methods for homogenization problems
    Abdulle, Assyr
    COMPTES RENDUS MATHEMATIQUE, 2008, 346 (1-2) : 97 - 102
  • [3] A discontinuous Galerkin based multiscale method for heterogeneous elastic wave equations
    Wang, Zhongqian
    Chung, Eric
    Li, Zishang
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 518
  • [4] Hybrid discontinuous Galerkin method for the hyperbolic linear Boltzmann transport equation for multiscale problems
    Sun, Qizheng
    Liu, Xiaojing
    Chai, Xiang
    He, Hui
    Wang, Lianjie
    Zhang, Bin
    Zhang, Tengfei
    PHYSICAL REVIEW E, 2024, 110 (06)
  • [5] TIME DISCRETIZATION OF PARABOLIC PROBLEMS BY THE DISCONTINUOUS GALERKIN METHOD
    ERIKSSON, K
    JOHNSON, C
    THOMEE, V
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1985, 19 (04): : 611 - 643
  • [6] AN ADAPTIVE DISCONTINUOUS GALERKIN MULTISCALE METHOD FOR ELLIPTIC PROBLEMS
    Elfverson, Daniel
    Georgoulis, Emmanuil H.
    Malqvist, Axel
    MULTISCALE MODELING & SIMULATION, 2013, 11 (03): : 747 - 765
  • [7] Local Discontinuous Galerkin Method for Parabolic Interface Problems
    Zhi-juan ZHANG
    Xi-jun YU
    Acta Mathematicae Applicatae Sinica, 2015, 31 (02) : 453 - 466
  • [8] Local Discontinuous Galerkin Method for Parabolic Interface Problems
    Zhang, Zhi-juan
    Yu, Xi-jun
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2015, 31 (02): : 453 - 466
  • [9] Local discontinuous Galerkin method for parabolic interface problems
    Zhi-juan Zhang
    Xi-jun Yu
    Acta Mathematicae Applicatae Sinica, English Series, 2015, 31 : 453 - 466
  • [10] Discontinuous Galerkin finite element method for parabolic problems
    Kaneko, Hideaki
    Bey, Kim S.
    Hou, Gene J. W.
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 182 (01) : 388 - 402