Alternating projection method for a class of tensor equations

被引:23
|
作者
Li, Zhibao [1 ]
Dai, Yu-Hong [2 ,3 ]
Gao, Huan [4 ]
机构
[1] Cent S Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, State Key Lab Sci & Engn Comp, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
[4] Hunan First Normal Univ, Coll Math & Computat Sci, Changsha 410205, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Tensor-vector product; Tensor equation; Ellipsoid surface; Alternating projection method; Regularity; SOLVING MULTILINEAR SYSTEMS; FAST ALGORITHMS; PRODUCT; DECOMPOSITIONS; CONVERGENCE; EIGENVALUES; NOTATION;
D O I
10.1016/j.cam.2018.07.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers how to solve a class of tensor equations arising from the unified definition of tensor vector products. Of special interest is the order-3 tensor equation whose solutions are the intersection of a group of quadrics from a geometric point of view. Inspired by the method of alternating projections for set intersection problems, we develop a hybrid alternating projection algorithm for solving order-3 tensor equations. The local linear convergence of the alternating projection method is established under suitable conditions. Some numerical experiments are conducted to evaluate the effect of the proposed algorithm. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:490 / 504
页数:15
相关论文
共 50 条
  • [21] An alternating direction method of multipliers for tensor complementarity problems
    Haoran Zhu
    Liping Zhang
    Computational and Applied Mathematics, 2021, 40
  • [22] Augmented Lagrangian Alternating Direction Method for Tensor RPCA
    Ruru HAO
    Zhixun SU
    JournalofMathematicalResearchwithApplications, 2017, 37 (03) : 367 - 378
  • [23] INCREMENTAL CP TENSOR DECOMPOSITION BY ALTERNATING MINIMIZATION METHOD
    Zeng, Chao
    Ng, Michael K.
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2021, 42 (02) : 832 - 858
  • [24] Nonnegative tensor factorizations using an alternating direction method
    Cai, Xingju
    Chen, Yannan
    Han, Deren
    FRONTIERS OF MATHEMATICS IN CHINA, 2013, 8 (01) : 3 - 18
  • [25] An alternating direction method of multipliers for tensor complementarity problems
    Zhu, Haoran
    Zhang, Liping
    COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (04):
  • [26] Sparse signal recovery via alternating projection method
    Liu, Haifeng
    Peng, Jigen
    SIGNAL PROCESSING, 2018, 143 : 161 - 170
  • [27] Nonnegative tensor factorizations using an alternating direction method
    Xingju Cai
    Yannan Chen
    Deren Han
    Frontiers of Mathematics in China, 2013, 8 : 3 - 18
  • [28] Alternating projection method for sparse model updating problems
    Dong, Bo
    Yu, Yan
    Tian, Dan Dan
    JOURNAL OF ENGINEERING MATHEMATICS, 2015, 93 (01) : 159 - 173
  • [29] Some Convergence Strategies for the Alternating Generalized Projection Method
    Andrade, M.
    Escalante, R.
    Espitia, R.
    BULLETIN OF COMPUTATIONAL APPLIED MATHEMATICS, 2013, 1 (02): : 47 - 77
  • [30] Variable target value relaxed alternating projection method
    A. Cegielski
    R. Dylewski
    Computational Optimization and Applications, 2010, 47 : 455 - 476