Convergence properties of the Newton-Raphson method for nonlinear problems

被引:24
|
作者
Janicke, L [1 ]
Kost, A [1 ]
机构
[1] Brandenburg Tech Univ Cottbus, Lehrstuhl Allgemeine Elektrotech, D-03013 Cottbus, Germany
关键词
convergence of numerical methods; Newton-Raphson method; magnetostatics; nonlinear equations; nonlinear magnetics;
D O I
10.1109/20.717577
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In order to solve the nonlinear equation system arising when solving magnetic fields with the finite element method, very often the Newton-Raphson method is applied. Sometimes it is advantageous or necessary to apply relaxation factors in order to improve the convergence. In this paper reasons and workarounds for the convergence problem are discussed.
引用
收藏
页码:2505 / 2508
页数:4
相关论文
共 50 条
  • [31] SKETCHED NEWTON-RAPHSON
    Yuan R.
    Lazaric A.
    GOWER R.M.
    SIAM Journal on Computing, 2022, 51 (04) : 1555 - 1583
  • [32] THE NEWTON-RAPHSON CONNECTION
    COOK, TE
    CHEMICAL ENGINEERING, 1988, 95 (11) : 169 - &
  • [33] AN OPTIMIZED IMPLEMENTATION OF THE NEWMARK/NEWTON-RAPHSON ALGORITHM FOR THE TIME INTEGRATION OF NONLINEAR PROBLEMS
    JACOB, BP
    EBECKEN, NFF
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 1994, 10 (12): : 983 - 992
  • [34] ON NEWTON-RAPHSON ITERATION
    TRAUB, JF
    AMERICAN MATHEMATICAL MONTHLY, 1967, 74 (08): : 996 - &
  • [35] RANDOMIZED NEWTON-RAPHSON
    JOSEPH, G
    LEVINE, A
    LIUKKONEN, J
    APPLIED NUMERICAL MATHEMATICS, 1990, 6 (06) : 459 - 469
  • [36] THE NEWTON-RAPHSON METHOD AND ADAPTIVE ODE SOLVERS
    Schneebeli, Hans Rudolf
    Wihler, Thomas P.
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2011, 19 (01) : 87 - 99
  • [37] GENERAL FLASH CALCULATION BY NEWTON-RAPHSON METHOD
    HIROSE, Y
    KAWASE, Y
    KUDOH, M
    JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 1978, 11 (02) : 150 - 152
  • [38] PIECEWISE NEWTON-RAPHSON METHOD - EXACT MODEL
    KESAVAN, HK
    BHAT, MV
    IEEE TRANSACTIONS ON POWER APPARATUS AND SYSTEMS, 1974, PA93 (06): : 1734 - 1734
  • [39] A GENERALIZED NEWTON-RAPHSON METHOD USING CURVATURE
    LEE, IW
    JUNG, GH
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 1995, 11 (09): : 757 - 763