Convergence properties of the Newton-Raphson method for nonlinear problems

被引:24
|
作者
Janicke, L [1 ]
Kost, A [1 ]
机构
[1] Brandenburg Tech Univ Cottbus, Lehrstuhl Allgemeine Elektrotech, D-03013 Cottbus, Germany
关键词
convergence of numerical methods; Newton-Raphson method; magnetostatics; nonlinear equations; nonlinear magnetics;
D O I
10.1109/20.717577
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In order to solve the nonlinear equation system arising when solving magnetic fields with the finite element method, very often the Newton-Raphson method is applied. Sometimes it is advantageous or necessary to apply relaxation factors in order to improve the convergence. In this paper reasons and workarounds for the convergence problem are discussed.
引用
收藏
页码:2505 / 2508
页数:4
相关论文
共 50 条
  • [1] Numerical calculation of nonlinear transient field problems with the Newton-Raphson method
    Drobny, S
    Weiland, T
    IEEE TRANSACTIONS ON MAGNETICS, 2000, 36 (04) : 809 - 812
  • [2] Modeling Of Active Bending By The Method Newton-Raphson And The Modified Newton-Raphson
    Herda, Roman
    Slivansky, Milos
    Sandanus, Jaroslav
    CIVIL AND ENVIRONMENTAL ENGINEERING, 2024, 20 (02) : 862 - 870
  • [3] FRACTIONAL-ORDER NEWTON-RAPHSON METHOD FOR NONLINEAR EQUATION WITH CONVERGENCE AND STABILITY ANALYSES
    Farman, Muhammad
    Akgul, Ali
    Alshaikh, Noorhan
    Azeem, Muhammad
    Asad, Jihad
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (10)
  • [4] IMPROVEMENTS OF CONVERGENCE CHARACTERISTICS OF NEWTON-RAPHSON METHOD FOR NONLINEAR MAGNETIC-FIELD ANALYSIS
    NAKATA, T
    TAKAHASHI, N
    FUJIWARA, K
    OKAMOTO, N
    MURAMATSU, K
    IEEE TRANSACTIONS ON MAGNETICS, 1992, 28 (02) : 1048 - 1051
  • [5] A modified Newton-Raphson method
    He, JH
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2004, 20 (10): : 801 - 805
  • [7] AN ASYNCHRONOUS NEWTON-RAPHSON METHOD
    LOOTSMA, FA
    SUPERCOMPUTING /, 1989, 62 : 367 - 376
  • [8] STOCHASTIC NEWTON-RAPHSON METHOD
    ANBAR, D
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1978, 2 (02) : 153 - 163
  • [9] Choosing the relaxation parameter for the solution of nonlinear magnetic field problems by the Newton-Raphson method
    O'Dwyer, Jeremiah
    O'Donnell, Terence
    IEEE Transactions on Magnetics, 1995, 31 (3 pt 1): : 1484 - 1487
  • [10] EXTENDING CONVERGENCE DOMAIN OF NEWTON-RAPHSON METHOD IN STRUCTURAL-ANALYSIS
    SCHMIDT, WF
    COMPUTERS & STRUCTURES, 1978, 9 (03) : 265 - 272