A weighted Gaussian process regression for multivariate modelling

被引:0
|
作者
Hong, Xiaodan [1 ]
Ren, Lihong [1 ]
Chen, Lei [1 ]
Guo, Fan [1 ]
Ding, Yongsheng [1 ]
Huang, Biao [2 ]
机构
[1] Donghua Univ, Coll Informat Sci & Technol, Engn Res Ctr Digitized Text & Fash Technol, Minist Educ, Shanghai 201620, Peoples R China
[2] Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB, Canada
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
MULTIOBJECTIVE OPTIMIZATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper develops three weighted Gaussian process regression (GPR) approaches for multivariate modelling. Taking into account weighted strategy in the traditional univariate GPR, the heteroscedastic noise problem has been solved. The present paper extends the univariate weighted GPR algorithm to the multivariate case. Considering the correlation and weight between data, as well as the correlation between outputs, the covariance functions of the proposed approaches are formulated. By formulating different process noise mechanisms, the proposed methods can solve different multivariate modelling problems. The effectiveness of the proposed algorithm is demonstrated by a numerical example as well as a six-level drawing of a Carbon fiber example.
引用
收藏
页码:195 / 200
页数:6
相关论文
共 50 条
  • [21] Regression analysis for multivariate process data of counts using convolved Gaussian processes
    Sofro, A'yunin
    Shi, Jian Qing
    Cao, Chunzheng
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2020, 206 : 57 - 74
  • [22] Accelerating multiscale modelling of fluids with on-the-fly Gaussian process regression
    David Stephenson
    James R. Kermode
    Duncan A. Lockerby
    Microfluidics and Nanofluidics, 2018, 22
  • [23] Modelling stars with Gaussian Process Regression: augmenting stellar model grid
    Li, Tanda
    Davies, Guy R.
    Lyttle, Alexander J.
    Ball, Warrick H.
    Carboneau, Lindsey M.
    Garcia, Rafael A.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 511 (04) : 5597 - 5610
  • [24] Accelerating multiscale modelling of fluids with on-the-fly Gaussian process regression
    Stephenson, David
    Kermode, James R.
    Lockerby, Duncan A.
    MICROFLUIDICS AND NANOFLUIDICS, 2018, 22 (12)
  • [25] Foreground modelling via Gaussian process regression: an application to HERA data
    Ghosh, Abhik
    Mertens, Florent
    Bernardi, Gianni
    Santos, Mario G.
    Kern, Nicholas S.
    Carilli, Christopher L.
    Grobler, Trienko L.
    Koopmans, Leon V. E.
    Jacobs, Daniel C.
    Liu, Adrian
    Parsons, Aaron R.
    Morales, Miguel F.
    Aguirre, James E.
    Dillon, Joshua S.
    Hazelton, Bryna J.
    Smirnov, Oleg M.
    Gehlot, Bharat K.
    Matika, Siyanda
    Alexander, Paul
    Ali, Zaki S.
    Beardsley, Adam P.
    Benefo, Roshan K.
    Billings, Tashalee S.
    Bowman, Judd D.
    Bradley, Richard F.
    Cheng, Carina
    Chichura, Paul M.
    DeBoer, David R.
    Acedo, Eloy de Lera
    Ewall-Wice, Aaron
    Fadana, Gcobisa
    Fagnoni, Nicolas
    Fortino, Austin F.
    Fritz, Randall
    Furlanetto, Steve R.
    Gallardo, Samavarti
    Glendenning, Brian
    Gorthi, Deepthi
    Greig, Bradley
    Grobbelaar, Jasper
    Hickish, Jack
    Josaitis, Alec
    Julius, Austin
    Igarashi, Amy S.
    Kariseb, MacCalvin
    Kohn, Saul A.
    Kolopanis, Matthew
    Lekalake, Telalo
    Loots, Anita
    MacMahon, David
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 495 (03) : 2813 - 2826
  • [26] Gaussian Process Regression for Small-Signal Modelling of GaN HEMTs
    Husain, Saddam
    Khusro, Ahmad
    Hashmi, Mohammad
    Nauryzbayev, Galymzhan
    Chaudhary, Muhammad Akmal
    2021 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS (ICCE), 2021,
  • [27] Small sample state of health estimation based on weighted Gaussian process regression
    Sheng, Hanmin
    Liu, Xin
    Bai, Libing
    Dong, Hanchuan
    Cheng, Yuhua
    JOURNAL OF ENERGY STORAGE, 2021, 41
  • [28] Angles-Only Initial Orbit Determination via Multivariate Gaussian Process Regression
    Schwab, David
    Singla, Puneet
    O'Rourke, Sean
    ELECTRONICS, 2022, 11 (04)
  • [29] Multivariate Gaussian and Student-t process regression for multi-output prediction
    Chen, Zexun
    Wang, Bo
    Gorban, Alexander N.
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (08): : 3005 - 3028
  • [30] Multivariate Gaussian and Student-t process regression for multi-output prediction
    Zexun Chen
    Bo Wang
    Alexander N. Gorban
    Neural Computing and Applications, 2020, 32 : 3005 - 3028