Multiclass Semisupervised Learning Based Upon Kernel Spectral Clustering

被引:39
|
作者
Mehrkanoon, Siamak [1 ]
Alzate, Carlos [2 ]
Mall, Raghvendra [1 ]
Langone, Rocco [1 ]
Suykens, Johan A. K. [1 ]
机构
[1] Katholieke Univ Leuven, Dept Elect Engn, ESAT STADIUS, B-3001 Leuven, Belgium
[2] IBM Res Corp, Smarter Cities Technol Ctr, Dublin, Ireland
关键词
Kernel spectral clustering (KSC); low embedding dimension for clustering; multiclass problem; semisupervised learning; COMMUNITY STRUCTURE; CLASSIFICATION;
D O I
10.1109/TNNLS.2014.2322377
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a multiclass semisupervised learning algorithm by using kernel spectral clustering (KSC) as a core model. A regularized KSC is formulated to estimate the class memberships of data points in a semisupervised setting using the one-versus-all strategy while both labeled and unlabeled data points are present in the learning process. The propagation of the labels to a large amount of unlabeled data points is achieved by adding the regularization terms to the cost function of the KSC formulation. In other words, imposing the regularization term enforces certain desired memberships. The model is then obtained by solving a linear system in the dual. Furthermore, the optimal embedding dimension is designed for semisupervised clustering. This plays a key role when one deals with a large number of clusters.
引用
收藏
页码:720 / 733
页数:14
相关论文
共 50 条
  • [41] Kernel-based fuzzy competitive learning clustering
    Mizutani, K
    Miyamoto, S
    FUZZ-IEEE 2005: Proceedings of the IEEE International Conference on Fuzzy Systems: BIGGEST LITTLE CONFERENCE IN THE WORLD, 2005, : 636 - 639
  • [42] Adaptive Matrix Sketching and Clustering for Semisupervised Incremental Learning
    Zhang, Zilin
    Li, Yan
    Zhang, Zhengwen
    Jin, Cheng
    Gao, Meiguo
    IEEE SIGNAL PROCESSING LETTERS, 2018, 25 (07) : 1069 - 1073
  • [43] Denoised Kernel Spectral Data Clustering
    Mall, Raghvendra
    Bensmail, Halima
    Langone, Rocco
    Varon, Carolina
    Suykens, Johan A. K.
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 3709 - 3716
  • [44] Spectral clustering with the probabilistic cluster kernel
    Izquierdo-Verdiguier, Emma
    Jenssen, Robert
    Gomez-Chova, Luis
    Camps-Valls, Gustavo
    NEUROCOMPUTING, 2015, 149 : 1299 - 1304
  • [45] Kernel spectral clustering with memory effect
    Langone, Rocco
    Alzate, Carlos
    Suykens, Johan A. K.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2013, 392 (10) : 2588 - 2606
  • [46] Powered Gaussian kernel spectral clustering
    Nataliani, Yessica
    Yang, Miin-Shen
    NEURAL COMPUTING & APPLICATIONS, 2019, 31 (Suppl 1): : 557 - 572
  • [47] Semisupervised Progressive Representation Learning for Deep Multiview Clustering
    Chen, Rui
    Tang, Yongqiang
    Xie, Yuan
    Feng, Wenlong
    Zhang, Wensheng
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (10) : 14341 - 14355
  • [48] Semisupervised clustering with metric learning using relative comparisons
    Kumar, Nimit
    Kummamuru, Krishna
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2008, 20 (04) : 496 - 503
  • [49] Incremental kernel spectral clustering for online learning of non-stationary data
    Langone, Rocco
    Agudelo, Oscar Mauricio
    De Moor, Bart
    Suykens, Johan A. K.
    NEUROCOMPUTING, 2014, 139 : 246 - 260
  • [50] Boosting Spectral Clustering on Incomplete Data via Kernel Correction and Affinity Learning
    Yu, Fangchen
    Zhao, Runze
    Shi, Zhan
    Lu, Yiwen
    Fan, Jicong
    Zeng, Yicheng
    Mao, Jianfeng
    Li, Wenye
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,