Performance optimisation of Tesla valve-type channel for cooling lithium-ion batteries

被引:56
|
作者
Lu, Yanbing [1 ]
Wang, Jianfeng [1 ,3 ]
Liu, Fen [2 ]
Liu, Yiqun [1 ]
Wang, Fuqiang [2 ]
Yang, Na [1 ]
Lu, Dongchen [1 ]
Jia, Yongkai [1 ]
机构
[1] Harbin Inst Technol, Sch Automot Engn, Weihai 264209, Shandong, Peoples R China
[2] Harbin Inst Technol, Sch Energy Sci & Engn, Harbin 150001, Peoples R China
[3] Harbin Inst Technol, State Key Lab Robot & Syst, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Battery thermal management; Cold plate; Tesla valve; Central composite design; Multi-objective optimisation; THERMAL MANAGEMENT-SYSTEM; PACK;
D O I
10.1016/j.applthermaleng.2022.118583
中图分类号
O414.1 [热力学];
学科分类号
摘要
An efficient and energy-saving battery thermal management system is important for electric vehicle power batteries. Cold plate cooling systems with channels are widely used for lithium-ion batteries, and the optimisation of cold plate structure, channel shape, and number is the key to research. Inspired by the Tesla valve-type microchannel heat sink used in microelectronics, we propose a cold plate with Tesla valve-type channels for rectangular lithium-ion batteries. Compared with the Z-type channel, the Tesla valve-type channel enhances heat exchange and improves temperature uniformity owing to the fluid disturbance caused by its bifurcated structure, especially under strong heat flux. Moreover, based on an accurate battery thermal model at a discharge of 3C established through thermal characteristic experiments, a numerical simulation is conducted to analyse the influence of some factors, including the angle between adjacent Tesla valves, distance between adjacent Tesla valves, distance between adjacent channels, and coolant inlet velocity. Finally, the agent models of evaluation indicators with fit goodness greater than 97% are obtained through a central composite design. The multiobjective optimisation results show that the reverse Tesla valve-type channel cold plate with an angle of 120 degrees, Tesla valve distance of 23.1 mm, channel distance of 28 mm, and inlet velocity of 0.83 m/s have a good balance between heat exchange performance and energy consumption, which controls the battery maximum temperature below 30.5 degrees C while maintaining a low channel pressure drop.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Clarifying the Effect of Pressure on Performance in Lithium-Ion Batteries
    Li, Wei
    Yang, Fan
    Wang, Kun
    Wu, Xian
    Ling, Min
    Shen, Xiaojie
    Yang, Xinfeng
    Lin, Zhen
    Wu, Kai
    Liang, Chengdu
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2025, 172 (01)
  • [32] Benzotriazole as an electrolyte additive on lithium-ion batteries performance
    Hamenu, Louis
    Madzvamuse, Alfred
    Mohammed, Latifatu
    Lee, Yong Min
    Ko, Jang Myoun
    Bon, Chris Yeajoon
    Kim, Sang Jun
    Cho, Won Il
    Baek, Yong Gu
    Park, Jongwook
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2017, 53 : 241 - 246
  • [33] The effect of thermal gradients on the performance of lithium-ion batteries
    Troxler, Yannic
    Wu, Billy
    Marinescu, Monica
    Yufit, Vladimir
    Patel, Yatish
    Marquis, Andrew J.
    Brandon, Nigel P.
    Offer, Gregory J.
    JOURNAL OF POWER SOURCES, 2014, 247 : 1018 - 1025
  • [34] The Effect of Pulsed Current on the Performance of Lithium-ion Batteries
    Huang, Xinrong
    Li, Yuanyuan
    Meng, Jinhao
    Sui, Xin
    Teodorescu, Remus
    Stroe, Daniel-Ioan
    2020 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE), 2020, : 5633 - 5640
  • [35] Effect of lithium salt type on silicon anode for lithium-ion batteries
    Lv, Linze
    Wang, Yan
    Huang, Weibo
    Wang, Yueyue
    Zhu, Guobin
    Zheng, Honghe
    ELECTROCHIMICA ACTA, 2022, 413
  • [36] Design and Optimization of a Liquid Cooling Thermal Management System with Flow Distributors and Spiral Channel Cooling Plates for Lithium-Ion Batteries
    Li, Peizheng
    Zhao, Jiapei
    Zhou, Shuai
    Duan, Jiabin
    Li, Xinke
    Zhang, Houcheng
    Yuan, Jinliang
    ENERGIES, 2023, 16 (05)
  • [37] Mineral Oil Immersion Cooling of Lithium-Ion Batteries: An Experimental Investigation
    Trimbake, Amol
    Singh, Chandra Pratap
    Krishnan, Shankar
    JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2022, 19 (02)
  • [38] Electrolytes for Lithium and Lithium-Ion Batteries
    Ball, Sarah
    JOHNSON MATTHEY TECHNOLOGY REVIEW, 2015, 59 (01): : 30 - 33
  • [39] A Review on Crashworthiness and Cooling Models for Lithium-Ion Batteries in Electric Vehicles
    Mushtaq, Mohammed
    Satish, S., V
    ADVANCES IN LIGHTWEIGHT MATERIALS AND STRUCTURES, ACALMS 2020, 2020, 8 : 75 - 84
  • [40] A review on the liquid cooling thermal management system of lithium-ion batteries
    Wu, Chunxia
    Sun, Yalong
    Tang, Heng
    Zhang, Shiwei
    Yuan, Wei
    Zhu, Likuan
    Tang, Yong
    APPLIED ENERGY, 2024, 375