On the independent domination number of graphs with given minimum degree

被引:6
|
作者
Glebov, NI [1 ]
Kostochka, AV [1 ]
机构
[1] Russian Acad Sci, Inst Math, Siberian Branch, Novosibirsk 630090, Russia
关键词
D O I
10.1016/S0012-365X(97)00267-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a new upper bound on the independent domination number of graphs in terms of the number of vertices and the minimum degree. This bound is slightly better than that of Haviland (1991) and settles the case delta = 2 of the corresponding conjecture by Favaron (1988). (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:261 / 266
页数:6
相关论文
共 50 条
  • [21] Bounds on the semipaired domination number of graphs with minimum degree at least two
    Teresa W. Haynes
    Michael A. Henning
    [J]. Journal of Combinatorial Optimization, 2021, 41 : 451 - 486
  • [22] Bounds on the paired domination number of graphs with minimum degree at least three
    Henning, Michael A.
    Pilsniak, Monika
    Tumidajewicz, Elzbieta
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2022, 417
  • [23] On the ratio of the domination number and the independent domination number in graphs
    Furuya, Michitaka
    Ozeki, Kenta
    Sasaki, Akinari
    [J]. DISCRETE APPLIED MATHEMATICS, 2014, 178 : 157 - 159
  • [24] Domination in graphs of minimum degree five
    Xing, HM
    Sun, L
    Chen, XG
    [J]. GRAPHS AND COMBINATORICS, 2006, 22 (01) : 127 - 143
  • [25] DOMINATION IN GRAPHS OF MINIMUM DEGREE FOUR
    Sohn, Moo Young
    Yuan Xudong
    [J]. JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2009, 46 (04) : 759 - 773
  • [26] Domination in Graphs of Minimum Degree Five
    Hua-Ming Xing
    Liang Sun
    Xue-Gang Chen
    [J]. Graphs and Combinatorics, 2006, 22 : 127 - 143
  • [27] GRAPHS WITH EQUAL DOMINATION AND INDEPENDENT DOMINATION NUMBER
    Vaidya, S. K.
    Pandit, R. M.
    [J]. TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2015, 5 (01): : 74 - 79
  • [28] Counting Independent Sets of a Fixed Size in Graphs with a Given Minimum Degree
    Engbers, John
    Galvin, David
    [J]. JOURNAL OF GRAPH THEORY, 2014, 76 (02) : 149 - 168
  • [29] On the number of edges in graphs with a given connected domination number
    Sanchis, LA
    [J]. DISCRETE MATHEMATICS, 2000, 214 (1-3) : 193 - 210
  • [30] A new upper bound on the total domination number in graphs with minimum degree six
    Henning, Michael A.
    Yeo, Anders
    [J]. DISCRETE APPLIED MATHEMATICS, 2021, 302 : 1 - 7