Mesopore-rich badam-shell biochar for efficient adsorption of Cr(VI) from aqueous solution

被引:50
|
作者
Jia, Xiuxiu [1 ]
Zhang, Yunqiu [1 ]
He, Zhuang [1 ]
Chang, Fengqin [1 ]
Zhang, Hucai [1 ]
Wagberg, Thomas [2 ]
Hu, Guangzhi [1 ]
机构
[1] Yunnan Univ, Sch Ecol & Environm Sci, Inst Ecol Res & Pollut Control Plateau Lakes, Kunming 650504, Yunnan, Peoples R China
[2] Umea Univ, Dept Phys, S-90187 Umea, Sweden
来源
基金
国家重点研发计划;
关键词
Badam-shell biochar; Concentrated phosphoric acid activation; Cr(VI); Adsorption; Reduction; Partition coefficient; HEXAVALENT CHROMIUM; MAGNETIC BIOCHAR; CR VI; ACTIVATED CARBONS; BISPHENOL-A; REMOVAL; REDUCTION; PERFORMANCE; WATER; ACID;
D O I
10.1016/j.jece.2021.105634
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Cr(VI) is a common pollutant in wastewater and many previous studies using biochar-based materials as adsorbents for their well adsorption performance. However, the preparations of some biochars are complex, uneconomical, and with a poor reusability, which set limit on their practical application. Here, a mesoporous-rich biochar-based Cr(VI) adsorbent was easily prepared by pyrolyzing the badam-shell that in situ activated by concentrated phosphoric acid (H3PO4), with the aim of improving the removal effect of Cr(VI) in an aqueous solution. The partition coefficient (PC) was used to compare the performance of adsorbents more comprehensively, and the maximal PC value of the activated badam-shell biochar (ABSB) was 978.8 L g(-1). In addition, its maximum adsorption capacity was 276.6 mg g(-1). ABSB has a superior removal effect on the relatively low concentration of Cr(VI) (<= 50 mg L-1), and residual Cr(VI) can meet the maximum emission standard (< 0.5 mg L-1) of industrial wastewater. The specific surface area of ABSB (1359.5 m(2) g(-1)) was approximately four times that of pristine badam-shell biochar (BSB) (371.87 m(2) g(-1)). The adsorption mechanisms involved were redox, complexation, electrostatic attraction and hydrogen bonding. The removal rate of Cr(VI) on ABSB remained at 81.6% after six cycles of adsorption-desorption. In a word, our study provides a simple, economic, and environmental method in fabricating the new adsorbent, which is highly promising and will not cause secondary pollution.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Multivariable modeling, optimization and experimental study of Cr(VI) removal from aqueous solution using peanut shell biochar
    Kumar, Ashwani
    Upadhyay, S. N.
    Mishra, P. K.
    Mondal, Monoj Kumar
    ENVIRONMENTAL RESEARCH, 2022, 215
  • [22] Adsorption of Cr(VI) from aqueous solution by hydrous zirconium oxide
    Rodrigues, Liana Alvares
    Maschio, Leandro Jose
    da Silva, Rafael Evangelista
    Caetano Pinto da Silva, Maria Lucia
    JOURNAL OF HAZARDOUS MATERIALS, 2010, 173 (1-3) : 630 - 636
  • [23] Adsorption of Cr(VI) from aqueous solution on mesoporous carbon nitride
    Chen, Huan
    Yan, Tingting
    Jiang, Fang
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2014, 45 (04) : 1842 - 1849
  • [24] Removal of Cr(VI) from aqueous solution by macroporous resin adsorption
    Wang, JL
    Zhan, XM
    Yi, Q
    JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH PART A-TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING, 2000, 35 (07): : 1211 - 1230
  • [25] Chromium(VI) adsorption from aqueous solution by prepared biochar from Onopordom Heteracanthom
    S. Ghorbani-Khosrowshahi
    M. A. Behnajady
    International Journal of Environmental Science and Technology, 2016, 13 : 1803 - 1814
  • [26] Chromium(VI) adsorption from aqueous solution by prepared biochar from Onopordom Heteracanthom
    Ghorbani-Khosrowshahi, S.
    Behnajady, M. A.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2016, 13 (07) : 1803 - 1814
  • [27] Cr(VI) Removal from Aqueous Solution Using a Magnetite Snail Shell
    Hoang, Le Phuong
    Nguyen, Thi Minh Phuong
    Van, Huu Tap
    Hoang, Thi Kim Dung
    Vu, Xuan Hoa
    Nguyen, Tien Vinh
    Ca, N. X.
    WATER AIR AND SOIL POLLUTION, 2020, 231 (01):
  • [28] Removal of toxic cations and Cr(Vi) from aqueous solution by hazelnut shell
    Cimino, G
    Passerini, A
    Toscano, G
    WATER RESEARCH, 2000, 34 (11) : 2955 - 2962
  • [29] Evaluation of modified peanut shell in the removal of Cr(VI) from aqueous solution
    Li, Qian
    Huan, Qing
    Ruan, Yifan
    DESALINATION AND WATER TREATMENT, 2022, 272 : 75 - 87
  • [30] Cr(VI) Removal from Aqueous Solution Using a Magnetite Snail Shell
    Le Phuong Hoang
    Thi Minh Phuong Nguyen
    Huu Tap Van
    Thi Kim Dung Hoang
    Xuan Hoa Vu
    Tien Vinh Nguyen
    N. X. Ca
    Water, Air, & Soil Pollution, 2020, 231