Hybrid high-order methods for variable-diffusion problems on general meshes

被引:91
|
作者
Di Pietro, Daniele A. [1 ]
Ern, Alexandre [2 ]
机构
[1] Univ Montpellier 2, I3M, F-34057 Montpellier 5, France
[2] Univ Paris Est, CERMICS ENPC, F-77455 Marne La Vallee 2, France
关键词
ELLIPTIC PROBLEMS; ARBITRARY-ORDER;
D O I
10.1016/j.crma.2014.10.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend the Hybrid High-Order method introduced by the authors for the Poisson problem to problems with heterogeneous/anisotropic diffusion. The cornerstone is a local discrete gradient reconstruction from element- and face-based polynomial degrees of freedom. Optimal error estimates are proved. (C) 2014 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:31 / 34
页数:4
相关论文
共 50 条
  • [21] A New Approach to Handle Curved Meshes in the Hybrid High-Order Method
    Yemm, Liam
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2024, 24 (03) : 1049 - 1076
  • [22] A framework for the generation of high-order curvilinear hybrid meshes for CFD simulations
    Turner, Michael
    Moxey, David
    Peiro, Joaquim
    Gammon, Mark
    Pollard, Claire R.
    Bucklow, Henry
    26TH INTERNATIONAL MESHING ROUNDTABLE, (IMR26 2017), 2017, 203 : 206 - 218
  • [23] Robust Hybrid High-Order Method on Polytopal Meshes with Small Faces
    Droniou, Jerome
    Yemm, Liam
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2022, 22 (01) : 47 - 71
  • [24] High-order hybrid DG-FV framework for compressible multi-fluid problems on unstructured meshes
    Maltsev, Vadim
    Skote, Martin
    Tsoutsanis, Panagiotis
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 502
  • [25] HIGH ORDER GALERKIN METHODS WITH GRADED MESHES FOR TWO-DIMENSIONAL REACTION-DIFFUSION PROBLEMS
    Li, Zhiwen
    Wu, Bin
    Xu, Yuesheng
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2016, 13 (03) : 319 - 343
  • [26] Arbitrary-order mixed methods for heterogeneous anisotropic diffusion on general meshes
    Di Pietro, Daniele A.
    Ern, Alexandre
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2017, 37 (01) : 40 - 63
  • [27] Provably positive high-order schemes for ideal magnetohydrodynamics: analysis on general meshes
    Wu, Kailiang
    Shu, Chi-Wang
    NUMERISCHE MATHEMATIK, 2019, 142 (04) : 995 - 1047
  • [28] Provably positive high-order schemes for ideal magnetohydrodynamics: analysis on general meshes
    Kailiang Wu
    Chi-Wang Shu
    Numerische Mathematik, 2019, 142 : 995 - 1047
  • [29] A high-order discontinuous Galerkin method for level set problems on polygonal meshes
    Lipnikov, Konstantin
    Morgan, Nathaniel
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 397
  • [30] A high-order TVD transport method for hybrid meshes on complex geological geometry
    Matthäi, SK
    Mezentsev, AA
    Pain, CC
    Eaton, MD
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2005, 47 (10-11) : 1181 - 1187