Object tracking and pose estimation using light-field object models

被引:0
|
作者
Zobel, M [1 ]
Fritz, M [1 ]
Scholz, I [1 ]
机构
[1] Univ Erlangen Nurnberg, Dept Comp Sci, Chair Pattern Recognit, D-91055 Erlangen, Germany
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Geometric object models have been widely used for visual object tracking. In this contribution we present particle filter based object tracking with pose estimation using an appearance based light-field object model. A light-field is an image-based object representation which can be used to render a photo realistic view of an arbitrarily shaped object from arbitrary viewpoints. It is shown how light-field object models can be generated and utilized. Furthermore, we show how these models fit into the probabilistic framework of dynamic state estimation by defining an appropriate likelihood distribution from an image similarity metric. Finally, we present results and accuracy evaluations from tracking experiments of different objects.
引用
收藏
页码:371 / 378
页数:8
相关论文
共 50 条
  • [1] Pose Selection for Underwater Object Detection, Pose Estimation, and Tracking
    Teigland, Hakon
    Hassani, Vahid
    Tore Moller, Ments
    [J]. IEEE Access, 2024, 12 : 142331 - 142342
  • [2] Visual Object Tracking Based on Light-Field Imaging in the Presence of Similar Distractors
    Wang, Mianzhao
    Shi, Fan
    Cheng, Xu
    Zhao, Meng
    Zhang, Yao
    Jia, Chen
    Tian, Weiwei
    Chen, Shengyong
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (03) : 2705 - 2716
  • [3] Appearance Based Object Pose Estimation Using Regression Models
    Saito, Mamoru
    Kitaguchi, Katsuhisa
    [J]. PROCEEDINGS OF THE SECOND INTERNATIONAL SYMPOSIUM ON TEST AUTOMATION AND INSTRUMENTATION, VOL 4, 2008, : 1987 - 1991
  • [4] Appearance Based Object Pose Estimation Using Regression Models
    Saito, Mamoru
    Kitaguchi, Katsuhisa
    [J]. 2008 PROCEEDINGS OF SICE ANNUAL CONFERENCE, VOLS 1-7, 2008, : 1844 - 1847
  • [5] Pose estimation and object tracking using 2D images
    Casado, Fernando
    Luis Lapido, Yago
    Losada, Diego P.
    Santana-Alonso, Alejandro
    [J]. 27TH INTERNATIONAL CONFERENCE ON FLEXIBLE AUTOMATION AND INTELLIGENT MANUFACTURING, FAIM2017, 2017, 11 : 63 - 71
  • [6] Neural Correspondence Field for Object Pose Estimation
    Huang, Lin
    Hodan, Tomas
    Ma, Lingni
    Zhang, Linguang
    Tran, Luan
    Twigg, Christopher
    Wu, Po-Chen
    Yuan, Junsong
    Keskin, Cem
    Wang, Robert
    [J]. COMPUTER VISION, ECCV 2022, PT X, 2022, 13670 : 585 - 603
  • [7] Part-based tracking for object pose estimation
    Shuang Ye
    Jianhong Ye
    Qing Lei
    [J]. Journal of Real-Time Image Processing, 2023, 20
  • [8] Part-based tracking for object pose estimation
    Ye, Shuang
    Ye, Jianhong
    Lei, Qing
    [J]. JOURNAL OF REAL-TIME IMAGE PROCESSING, 2023, 20 (05)
  • [9] High quality depth map estimation of object surface from light-field images
    Liu, Fei
    Hou, Guangqi
    Sun, Zhenan
    Tan, Tieniu
    [J]. NEUROCOMPUTING, 2017, 252 : 3 - 16
  • [10] Probabilistic image models for object recognition and pose estimation
    Hornegger, J
    Niemann, H
    [J]. STATE-OF-THE-ART IN CONTENT-BASED IMAGE AND VIDEO RETRIEVAL, 2001, 22 : 125 - 142