Multi-component mathematical model of solid oxide fuel cell anode

被引:45
|
作者
Hussain, MM
Li, X [1 ]
Dincer, I
机构
[1] Univ Waterloo, Dept Mech Engn, Waterloo, ON N2L 3G1, Canada
[2] Univ Ontario, Inst Technol, Fac Engn & Appl Sci, Oshawa, ON L1H 7K4, Canada
关键词
multi-component; mathematical model; SOFC anode;
D O I
10.1002/er.1141
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A mathematical model describing the multi-component species transport inside the porous solid oxide fuel cell (SOFC) anode has been developed. The model includes the water-gas shift reaction in the anode electrode (backing) layer and the spatially resolved electrochemical reaction in the reaction zone layer. The modified Stefan-Maxwell equations incorporating Knudsen diffusion were used to model multicomponent diffusion inside the porous electrode (backing) and reaction zone layers. Moreover, the general Butler-Volmer equation was used to model the electrochemical reaction in the reaction zone layer. The model can predict the distribution of species within the SOFC anode for any reformate gas composition involving carbon dioxide, carbon monoxide, hydrogen and water vapour. The chemical and electrochemical reactions as well as transport processes in the SOFC anode can be simulated, yielding the anode performance under various operating and design conditions. This anode model can be coupled with a similarly developed model for the cathode to form an overall model for a single SOFC model. Copyright (c) 2005 John Wiley & Sons, Ltd.
引用
收藏
页码:1083 / 1101
页数:19
相关论文
共 50 条
  • [21] Multi-scale electrochemical reaction anode model for solid oxide fuel cells
    Xie, Yuanyuan
    Xue, Xingjian
    JOURNAL OF POWER SOURCES, 2012, 209 : 81 - 89
  • [22] A mathematical model for the dissolution of stoichiometric particles in multi-component alloys
    Vermolen, FJ
    Vuik, C
    van der Zwaag, S
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2002, 328 (1-2): : 14 - 25
  • [23] Solid oxide fuel cell anode for the direct utilization of ethanol as a fuel
    Venancio, Selma A.
    de Miranda, Paulo Emilio V.
    SCRIPTA MATERIALIA, 2011, 65 (12) : 1065 - 1068
  • [24] A mathematical model of a tubular solid oxide fuel cell with specified combustion zone
    Jia, Junxi
    Abudula, Abuliti
    Wei, Liming
    Jiang, Renqiu
    Shen, Shengqiang
    JOURNAL OF POWER SOURCES, 2007, 171 (02) : 696 - 705
  • [25] Multi-Scale, Multi-Physics Approach for Solid Oxide Fuel Cell Anode Reaction
    Liu, S.
    Liu, S.
    Saha, L. C.
    Iskandarov, A. M.
    Jiao, Z.
    Hara, S.
    Ishimoto, T.
    Tada, T.
    Umeno, Y.
    Shikazono, N.
    Matsumura, S.
    Koyama, M.
    SOLID OXIDE FUEL CELLS 15 (SOFC-XV), 2017, 78 (01): : 2835 - 2844
  • [26] The influence of fuel composition on Solid Oxide Fuel Cell obtained by using the advanced mathematical model
    Milewski, Jaroslaw
    JOURNAL OF POWER TECHNOLOGIES, 2011, 91 (04): : 179 - 185
  • [27] MODELLING THE INFLUENCE OF FUEL COMPOSITION ON SOLID OXIDE FUEL CELL BY USING THE ADVANCED MATHEMATICAL MODEL
    Milewski, Jaroslaw
    Badyda, Krzysztof
    Miller, Andrzej
    RYNEK ENERGII, 2010, (03): : 159 - 163
  • [28] Solid oxide fuel cell with oxide anode-side support
    Pillai, Manoj R.
    Jiang, Yi
    Mansourian, Negar
    Kim, Ilwon
    Bierschenk, David M.
    Zhu, Huayang
    Kee, Robert J.
    Barnett, Scott A.
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2008, 11 (10) : B174 - B177
  • [29] Evaporation characteristics of multi-component fuel
    Myong, Kwang-Jae
    Suzuki, Hirotaka
    Senda, Jiro
    Fujimoto, Hajime
    FUEL, 2006, 85 (17-18) : 2632 - 2639
  • [30] MATHEMATICAL MODEL OF FORMATION OF MULTI-COMPONENT MIXTURE OF SEGREGATING DISPERSE SOLIDS
    Mizonov, V. E.
    Balagurov, I. A.
    Mitrofanov, A. V.
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII KHIMIYA I KHIMICHESKAYA TEKHNOLOGIYA, 2014, 57 (08): : 67 - +