High-energy ball milling of WC-10Co: Effect of the milling medium and speed on the mechanical properties

被引:11
|
作者
Megret, Alexandre [1 ]
Vitry, Veronique [1 ]
Delaunois, Fabienne [1 ]
机构
[1] Univ Mons, Met Dept, 20 Pl Parc, B-7000 Mons, Belgium
关键词
Ball milling; Cemented carbide; WC-10Co; Grain size distribution; Mechanical properties; MILLED NANOCRYSTALLINE WC; CO COMPOSITE POWDERS; TUNGSTEN CARBIDE; CEMENTED CARBIDES; SINGLE-PHASE; GRAIN-GROWTH; CONSOLIDATION; ALLOY; MICROSTRUCTURE; CARBURIZATION;
D O I
10.1016/j.ijrmhm.2021.105774
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Ball milling is a key step in the processing of tungsten carbide parts. It ensures a good distribution of the different powders and reduces the crystallite size in the nanometer range by "mechanical alloying ". The study of the influence of the rotation speed and the milling medium on the sinterability of the WC-Co composite is important. The optimization of milling was achieved by characterizing the porosity and the grain size distribution after sintering, and the mechanical properties. The samples have been sintered under vacuum at 1400 C for 1 h. Optimized processing parameters were found to be 300 rpm in wet milling and 450 rpm in dry milling (average grain size of 760-800 nm, hardness of 1700-1720 HV30, and fracture toughness of 10.5-11.0 MP root m for both cases).
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Effect of High-Energy Milling and Sintering Temperature on the Properties of Al2O3-WC-Co Composites
    Azevedo, Heytor V. S. B.
    Raimundo, Rafael A.
    Silva, David D. S.
    Morais, Luis M. F.
    Costa, Francine A.
    Macedo, Daniel A.
    Cavalcante, Danielle G. L.
    Gomes, Uilame U.
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2021, 30 (02) : 1504 - 1512
  • [32] Effect of High-Energy Milling and Sintering Temperature on the Properties of Al2O3-WC-Co Composites
    Heytor V. S. B. Azevêdo
    Rafael A. Raimundo
    David D. S. Silva
    Luís M. F. Morais
    Franciné A. Costa
    Daniel A. Macedo
    Danielle G. L. Cavalcante
    Uílame U. Gomes
    Journal of Materials Engineering and Performance, 2021, 30 : 1504 - 1512
  • [33] Preparation of nanocrystalline VOy by high-energy ball milling
    A. A. Valeeva
    H. Schroettner
    A. A. Rempel
    Inorganic Materials, 2011, 47
  • [35] Nanostructured Fe obtained by high-energy ball milling
    Martinez-Blanco, D.
    Gorria, P.
    Blanco, J. A.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2006, 300 (01) : E339 - E341
  • [36] High-energy ball milling of NiAl(Fe) system
    Principi, G
    Spataru, T
    Maddalena, A
    Gialanella, S
    HYPERFINE INTERACTIONS, 2002, 139 (1-4): : 315 - 324
  • [37] High-Energy Ball Milling of NiAl(Fe) System
    G. Principi
    T. Spataru
    A. Maddalena
    S. Gialanella
    Hyperfine Interactions, 2002, 139-140 : 315 - 324
  • [38] High-energy ball-milling of alloys and compounds
    Le Caër, G
    Delcroix, P
    Bégin-Colin, S
    Ziller, T
    HYPERFINE INTERACTIONS, 2002, 141 (1-4): : 63 - 72
  • [39] Amorphization of selenium induced by high-energy ball milling
    Fan, G. J.
    Guo, F. Q.
    Hu, Z. Q.
    Quan, M. X.
    Physical Review B: Condensed Matter, 1997, 55 (17):
  • [40] Iron nanoparticles produced by high-energy ball milling
    Munoz, Jorge E.
    Cervantes, Janeth
    Esparza, Rodrigo
    Rosas, Gerardo
    JOURNAL OF NANOPARTICLE RESEARCH, 2007, 9 (05) : 945 - 950