Layered Poly(3-hexylthiophene) Nanowhiskers Studied by Atomic Force Microscopy and Kelvin Probe Force Microscopy

被引:17
|
作者
McFarland, Frederick M. [1 ]
Brickson, Benjamin [2 ]
Guo, Song [1 ]
机构
[1] Univ So Mississippi, Dept Chem & Biochem, Hattiesburg, MS 39406 USA
[2] Petal High Sch, Petal, MS 39465 USA
基金
美国国家科学基金会;
关键词
FIELD-EFFECT TRANSISTORS; ELECTRONIC CHARACTERIZATION; CHARGE-TRANSPORT; MORPHOLOGY; NANOSCALE; MICROSTRUCTURE; NANOSTRUCTURES; PERFORMANCE; MONOLAYER; MOBILITY;
D O I
10.1021/ma502411n
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The optoelectronic properties of organic electronic materials are significantly affected by their molecular packing and local environments. Herein, atomic force microscopy (AFM) is used to characterize nanowhiskers of poly(3-hexylthiphene) (P3HT). The P3HT nanowhiskers form layered structures with distinctive heights that increase over time, suggesting that layered structures are more thermodynamically favored in solution. Further inspection reveals that the monolayer (ML) nanowhiskers are consistently wider than double-layered (DL) ones. The width disparity is likely due to the sliding of pi-pi stacked motifs within ML nanowhiskers evident by the rougher edges Of ML nanowhiskers. Conversely, the interfacial interactions between two P3HT monolayers may inhibit the sliding of conjugated motifs inside nanowhiskers, leading to much narrower and tightly packed structures. Kelvin probe force microscopy (KPFM) measurements are carried out to investigate the influence of ML and DL nanowhiskers' morphologies and local environments on their electronic properties. Curved, vertically stacked, and overlapped regions show higher,contact potential differences (CPD) resulting from a combined effect of irregular molecular packing and local environmental impacts.
引用
收藏
页码:3049 / 3056
页数:8
相关论文
共 50 条
  • [31] On the deconvolution of Kelvin probe force microscopy data
    Bluemel, A.
    Plank, H.
    Klug, A.
    Fisslthaler, E.
    Sezen, M.
    Grogger, W.
    List, E. J. W.
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2010, 81 (05):
  • [32] Kelvin probe force microscopy for material characterization
    Glatzel, Thilo
    Gysin, Urs
    Meyer, Ernst
    [J]. MICROSCOPY, 2022, 71 : i165 - i173
  • [33] Practical aspects of Kelvin probe force microscopy
    Jacobs, HO
    Knapp, HF
    Stemmer, A
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 1999, 70 (03): : 1756 - 1760
  • [34] Kelvin Probe Force Microscopy in Nonpolar Liquids
    Domanski, Anna L.
    Sengupta, Esha
    Bley, Karina
    Untch, Maria B.
    Weber, Stefan A. L.
    Landfester, Katharina
    Weiss, Clemens K.
    Butt, Hans-Juergen
    Berger, Ruediger
    [J]. LANGMUIR, 2012, 28 (39) : 13892 - 13899
  • [35] Resolution and contrast in Kelvin probe force microscopy
    Jacobs, HO
    Leuchtmann, P
    Homan, OJ
    Stemmer, A
    [J]. JOURNAL OF APPLIED PHYSICS, 1998, 84 (03) : 1168 - 1173
  • [36] Quantitative AC - Kelvin Probe Force Microscopy
    Kohl, Dominik
    Mesquida, Patrick
    Schitter, Georg
    [J]. MICROELECTRONIC ENGINEERING, 2017, 176 : 28 - 32
  • [37] Kelvin probe force microscopy study on nanotriboelectrification
    Sun, Hao
    Chu, Haibin
    Wang, Jinyong
    Ding, Lei
    Li, Yan
    [J]. APPLIED PHYSICS LETTERS, 2010, 96 (08)
  • [38] Poly(3-hexylthiophene) monolayer nanowhiskers
    Guo, Yan
    Jiang, Lang
    Ma, Xiaojing
    Hu, Wenping
    Su, Zhaohui
    [J]. POLYMER CHEMISTRY, 2013, 4 (16) : 4308 - 4311
  • [39] Volta Potential of Oxidized Aluminum Studied by Scanning Kelvin Probe Force Microscopy
    Yasakau, Kiryl A.
    Salak, Andrei N.
    Zheludkevich, Mikhail L.
    Ferreira, Mario G. S.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (18): : 8474 - 8484
  • [40] Kelvin Probe Force Microscopy and Electrochemical Atomic Force Microscopy Investigations of Lithium Nucleation and Growth: Influence of the Electrode Surface Potential
    To-A-Ran, Weerawat
    Mastoi, Naila Riaz
    Ha, Chae Yeon
    Song, Young Jae
    Kim, Young-Jun
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2024, 15 (28): : 7265 - 7271