Machine learning in crop yield modelling: A powerful tool, but no surrogate for science

被引:58
|
作者
Lischeid, Gunnar [1 ,2 ]
Webber, Heidi [1 ]
Sommer, Michael [1 ,2 ]
Nendel, Claas [1 ,3 ]
Ewert, Frank [1 ,4 ]
机构
[1] Leibniz Ctr Agr Landscape Res ZALF, Eberswalder Str 84, D-15374 Muncheberg, Germany
[2] Univ Potsdam, Inst Environm Sci & Geog, Karl Liebknecht Str 24-25, D-14476 Potsdam, Germany
[3] Univ Potsdam, Inst Biochem & Biol, Karl Liebknecht Str 24-25, D-14476 Potsdam, Germany
[4] Univ Bonn, Inst Crop Sci & Resource Conservat INRES, Katzenburgweg 5, D-53115 Bonn, Germany
关键词
Crop modelling; Machine learning; Random forests; Support vector machine; Feature selection; Equivocality; CLIMATE-CHANGE; WHEAT YIELD; WINTER-WHEAT; FEATURE-SELECTION; MAIZE YIELD; HEAT-STRESS; REGRESSION-MODELS; FOOD SECURITY; SILAGE MAIZE; IMPACTS;
D O I
10.1016/j.agrformet.2021.108698
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Provisioning a sufficient stable source of food requires sound knowledge about current and upcoming threats to agricultural production. To that end machine learning approaches were used to identify the prevailing climatic and soil hydrological drivers of spatial and temporal yield variability of four crops, comprising 40 years yield data each from 351 counties in Germany. Effects of progress in agricultural management and breeding were subtracted from the data prior the machine learning modelling by fitting smooth non-linear trends to the 95th percentiles of observed yield data. An extensive feature selection approach was followed then to identify the most relevant predictors out of a large set of candidate predictors, comprising various soil and meteorological data. Particular emphasis was placed on studying the uniqueness of identified key predictors. Random Forest and Support Vector Machine models yielded similar although not identical results, capturing between 50% and 70% of the spatial and temporal variance of silage maize, winter barley, winter rapeseed and winter wheat yield. Equally good performance could be achieved with different sets of predictors. Thus identification of the most reliable models could not be based on the outcome of the model study only but required expert's judgement. Relationships between drivers and response often exhibited optimum curves, especially for summer air temperature and precipitation. In contrast, soil moisture clearly proved less relevant compared to meteorological drivers. In view of the expected climate change both excess precipitation and the excess heat effect deserve more attention in breeding as well as in crop modelling.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Machine learning approach for forecasting crop yield based on climatic parameters
    Veenadhari, S.
    Misra, Bharat
    Singh, C. D.
    2014 INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND INFORMATICS (ICCCI), 2014,
  • [42] Machine Learning-based Crop Yield Prediction by Data Augmentation
    Balmumcu, Alper
    Kayabol, Koray
    Erten, Esra
    32ND IEEE SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU 2024, 2024,
  • [43] Comparative Analysis of Machine Learning Models for Crop's yield Prediction
    Babar, Zaheer Ud Din
    UlAmin, Riaz
    Sarwar, Muhammad Nabeel
    Jabeen, Sidra
    Abdullah, Muhammad
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2022, 22 (05): : 330 - 334
  • [44] Bitter Melon Crop Yield Prediction using Machine Learning Algorithm
    Villanueva, Marizel B.
    Salenga, Ma. Louella M.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2018, 9 (03) : 1 - 6
  • [45] Agricultural Crop Yield Prediction for Indian Farmers Using Machine Learning
    Narawade, Vaibhav
    Chaudhari, Akash
    Mohammad, Muntazir Alam
    Dubey, Tanmay
    Jadhav, Bhumika
    ARTIFICIAL INTELLIGENCE: THEORY AND APPLICATIONS, VOL 1, AITA 2023, 2024, 843 : 75 - 86
  • [46] Machine Learning-Based Forecasting Technique for Crop Yield: A Study
    Ragunath, R.
    Narmadha, N.
    Rathipriya, R.
    SOFT COMPUTING FOR SECURITY APPLICATIONS, ICSCS 2022, 2023, 1428 : 277 - 289
  • [47] Multimodal Machine Learning Based Crop Recommendation and Yield Prediction Model
    Gopi, P. S. S.
    Karthikeyan, M.
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2023, 36 (01): : 313 - 326
  • [48] Predictive ability of machine learning methods for massive crop yield prediction
    Gonzalez-Sanchez, Alberto
    Frausto-Solis, Juan
    Ojeda-Bustamante, Waldo
    SPANISH JOURNAL OF AGRICULTURAL RESEARCH, 2014, 12 (02) : 313 - 328
  • [49] Crop yield prediction using machine learning: A systematic literature review
    van Klompenburg, Thomas
    Kassahun, Ayalew
    Catal, Cagatay
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2020, 177
  • [50] Enhancing Crop Yield Prediction with IoT and Machine Learning in Precision Agriculture
    Manikandababu, C. S.
    Preethi, V.
    Kanna, M. Yogesh
    Vedhathiri, K.
    Kumar, S. Suresh
    2024 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATION AND APPLIED INFORMATICS, ACCAI 2024, 2024,