On the formation of non-topological string networks

被引:4
|
作者
Achucarro, A [1 ]
Borrill, J
Liddle, AR
机构
[1] UPV, EHU, Dept Theoret Phys, Bilbao 48080, Spain
[2] Univ Groningen, Inst Theoret Phys, Groningen, Netherlands
[3] Univ Calif Berkeley, Ctr Particle Astrophys, Berkeley, CA 94720 USA
[4] Lawrence Berkeley Lab, Natl Energy Res Sci Comp Ctr, Berkeley, CA USA
[5] Univ Calif Berkeley, Natl Lab, Berkeley, CA 94720 USA
[6] Univ Sussex, Ctr Astron, Brighton BN1 9QJ, E Sussex, England
关键词
string simulation; defect formation; semilocal string; gauge fields;
D O I
10.1016/S0921-4526(98)00458-X
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We review recent simulations of the formation of a particular class of non-topological defects known as semilocal strings during a phase transition. Semilocal strings have properties that are intermediate between topological cosmic strings and stable electroweak strings, and therefore the observation that they could form in substantial quantities during a cosmological phase transition has implications for structure formation, baryogenesis, etc. At the same time, and from a purely theoretical point of view, they provide a very good testing ground for investigating the role of gauge fields in defect formation. (C) 1998 Published by Elsevier Science B.V. All rights reserved.
引用
下载
收藏
页码:116 / 125
页数:10
相关论文
共 50 条
  • [21] FERMION-FIELD NON-TOPOLOGICAL SOLITONS
    FRIEDBERG, R
    LEE, TD
    PHYSICAL REVIEW D, 1977, 15 (06): : 1694 - 1711
  • [22] Ferromagnetism in the Hubbard model with topological/non-topological flat bands
    Katsura, Hosho
    Maruyama, Isao
    Tanaka, Akinori
    Tasaki, Hal
    EPL, 2010, 91 (05)
  • [23] A non-topological view of dcpos as convergence spaces
    Heckmann, R
    THEORETICAL COMPUTER SCIENCE, 2003, 305 (1-3) : 159 - 186
  • [24] Hadron structures from the non-topological soliton
    Yang, Ghil-Seok
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2023, 82 (06) : 515 - 521
  • [25] Community detection with consideration of non-topological information
    Zou Sheng-Rong
    Peng Yu-Jing
    Liu Ai-Fen
    Xu Xiu-Lian
    He Da-Ren
    CHINESE PHYSICS B, 2011, 20 (01)
  • [26] A NON-TOPOLOGICAL PROOF OF THE UNIFORM BOUNDEDNESS THEOREM
    HENNEFELD, J
    AMERICAN MATHEMATICAL MONTHLY, 1980, 87 (03): : 217 - 217
  • [27] THE NON-TOPOLOGICAL, COLOR DIELECTRIC, SOLITON MODEL
    WILETS, L
    PROGRESS IN PARTICLE AND NUCLEAR PHYSICS, 1988, 20 : 53 - 63
  • [28] A non-topological mechanism for negative linear compressibility
    Binns, Jack
    Kamenev, Konstantin V.
    Marriott, Katie E. R.
    McIntyre, Garry J.
    Moggach, Stephen A.
    Murrie, Mark
    Parsons, Simon
    CHEMICAL COMMUNICATIONS, 2016, 52 (47) : 7486 - 7489
  • [29] Non-topological Vortex Configurations in the ABJM Model
    Xiaosen Han
    Gabriella Tarantello
    Communications in Mathematical Physics, 2017, 352 : 345 - 385
  • [30] Non-topological Vortex Configurations in the ABJM Model
    Han, Xiaosen
    Tarantello, Gabriella
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 352 (01) : 345 - 385