ATF6 Regulates Cardiac Hypertrophy by Transcriptional Induction of the mTORC1 Activator, Rheb

被引:93
|
作者
Blackwood, Erik A. [1 ]
Hofmann, Christoph [1 ,2 ,3 ]
Santo Domingo, Michelle [1 ]
Bilal, Alina S. [1 ]
Sarakki, Anup [1 ]
Stauffer, Winston [1 ]
Arrieta, Adrian [1 ]
Thuerauf, Donna J. [1 ]
Kolkhorst, Fred W. [1 ]
Mueller, Oliver J. [2 ,3 ,4 ,5 ]
Jakobi, Tobias [3 ,6 ]
Dieterich, Christoph [3 ,6 ]
Katus, Hugo A. [2 ,3 ]
Doroudgar, Shirin [2 ,3 ]
Glembotski, Christopher C. [1 ]
机构
[1] San Diego State Univ, Heart Inst, Dept Biol, 5500 Campanile Dr, San Diego, CA 92182 USA
[2] Univ Hosp Heidelberg Germany, Dept Cardiol Angiol & Pneumol, Heidelberg, Germany
[3] German Ctr Cardiovasc Res, Partner Site Heidelberg, Heidelberg, Germany
[4] Univ Kiel, Dept Internal Med 3, Kiel, Germany
[5] German Ctr Cardiovasc Res, Partner Site Hamburg Kiel Lubeck, Lubeck, Germany
[6] Univ Hosp Heidelberg, Dept Internal Med 3, Sect Bioinformat & Syst Cardiol, Heidelberg, Germany
基金
美国国家卫生研究院;
关键词
ATF6; cardiac hypertrophy; ER stress; mTORC1; proteostasis; ENDOPLASMIC-RETICULUM STRESS; PROTEIN-SYNTHESIS; AORTIC CONSTRICTION; HEART-FAILURE; GROWTH; GENE; INHIBITION; APOPTOSIS; EXERCISE; COMPLEX;
D O I
10.1161/CIRCRESAHA.118.313854
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Rationale: Endoplasmic reticulum (ER) stress dysregulates ER proteostasis, which activates the transcription factor, ATF6 (activating transcription factor 6 alpha), an inducer of genes that enhance protein folding and restore ER proteostasis. Because of increased protein synthesis, it is possible that protein folding and ER proteostasis are challenged during cardiac myocyte growth. However, it is not known whether ATF6 is activated, and if so, what its function is during hypertrophic growth of cardiac myocytes. Objective: To examine the activity and function of ATF6 during cardiac hypertrophy. Methods and Results: We found that ER stress and ATF6 were activated and ATF6 target genes were induced in mice subjected to an acute model of transverse aortic constriction, or to free-wheel exercise, both of which promote adaptive cardiac myocyte hypertrophy with preserved cardiac function. Cardiac myocyte-specific deletion of Atf6 (ATF6 cKO [conditional knockout]) blunted transverse aortic constriction and exercise-induced cardiac myocyte hypertrophy and impaired cardiac function, demonstrating a role for ATF6 in compensatory myocyte growth. Transcript profiling and chromatin immunoprecipitation identified RHEB (Ras homologue enriched in brain) as an ATF6 target gene in the heart. RHEB is an activator of mTORC1 (mammalian/ mechanistic target of rapamycin complex 1), a major inducer of protein synthesis and subsequent cell growth. Both transverse aortic constriction and exercise upregulated RHEB, activated mTORC1, and induced cardiac hypertrophy in wild type mouse hearts but not in ATF6 cKO hearts. Mechanistically, knockdown of ATF6 in neonatal rat ventricular myocytes blocked phenylephrine-and IGF1 (insulin-like growth factor 1)-mediated RHEB induction, mTORC1 activation, and myocyte growth, all of which were restored by ectopic RHEB expression. Moreover, adeno-associated virus 9-RHEB restored cardiac growth to ATF6 cKO mice subjected to transverse aortic constriction. Finally, ATF6 induced RHEB in response to growth factors, but not in response to other activators of ATF6 that do not induce growth, indicating that ATF6 target gene induction is stress specific. Conclusions: Compensatory cardiac hypertrophy activates ER stress and ATF6, which induces RHEB and activates mTORC1. Thus, ATF6 is a previously unrecognized link between growth stimuli and mTORC1-mediated cardiac growth.
引用
收藏
页码:79 / 93
页数:15
相关论文
共 50 条
  • [21] ATF3-SLC7A7 Axis Regulates mTORC1 Signaling to Suppress Lipogenesis and Tumorigenesis in Hepatocellular Carcinoma
    Zhang, Qinglin
    Zhu, Fengzhi
    Tong, Yin
    Huang, Yunxing
    Zhang, Jiangwen
    CELLS, 2025, 14 (04)
  • [22] Control of TSC2-Rheb signaling axis by arginine regulates mTORC1 activity (vol 5, e11058, 201226)
    Carroll, Bernadette
    Maetzel, Dorothea
    Maddocks, Oliver D. K.
    Otten, Gisela
    Ratcliff, Matthew
    Smith, Graham R.
    Dunlop, Elaine A.
    Passos, Joao F.
    Davies, Owen Richard
    Jaenisch, Rudolf
    Tee, Andrew R.
    Sarkar, Sovan
    Korolchuk, Viktor I.
    ELIFE, 2020, 9
  • [23] PKG1α Cysteine-42 Redox State Controls mTORC1 Activation in Pathological Cardiac Hypertrophy
    Oeing, Christian U.
    Nakamura, Taishi
    Pan, Shi
    Mishra, Sumita
    Dunkerly-Eyring, Brittany L.
    Kokkonen-Simon, Kristen M.
    Lin, Brian L.
    Chen, Anna
    Zhu, Guangshuo
    Bedja, Djahida
    Lee, Dong Ik
    Kass, David A.
    Ranek, Mark J.
    CIRCULATION RESEARCH, 2020, 127 (04) : 522 - 533
  • [24] The SRF co-activator, ATF6, is a nuclear target of the TAK1 pathway in TGFβ signal transduction
    Zhang, D
    Belaguli, NS
    Schwartz, RJ
    Schneider, MD
    CIRCULATION, 1999, 100 (18) : 352 - 352
  • [25] Cand2, a Translationally Regulated Muscle Specific Protein, Mediates mTORC1 Dependent Cardiac Hypertrophy
    Sandmann, Clara
    Gorska, Agnieszka
    Hofmann, Christoph
    Katus, Hugo
    Volkers, Mirko
    CIRCULATION, 2018, 138
  • [26] S6K1 Alternative Splicing Modulates Its Oncogenic Activity and Regulates mTORC1
    Ben-Hur, Vered
    Denichenko, Polina
    Siegfried, Zahava
    Maimon, Avi
    Krainer, Adrian
    Davidson, Ben
    Karni, Rotem
    CELL REPORTS, 2013, 3 (01): : 103 - 115
  • [27] PKG1-modified TSC2 regulates mTORC1 activity to counter adverse cardiac stress
    Ranek, Mark J.
    Kokkonen-Simon, Kristen M.
    Chen, Anna
    Dunkerly-Eyring, Brittany L.
    Vera, Miguel Pinilla
    Oeing, Christian U.
    Patel, Chirag H.
    Nakamura, Taishi
    Zhu, Guangshuo
    Bedja, Djahida
    Sasaki, Masayuki
    Holewinski, Ronald J.
    Van Eyk, Jennifer E.
    Powell, Jonathan D.
    Lee, Dong Ik
    Kass, David A.
    NATURE, 2019, 566 (7743) : 264 - +
  • [28] Transcriptional induction of the human asparagine synthetase gene during the unfolded protein response does not require the ATF6 and IRE1/XBP1 arms of the pathway
    Gjymishka, Altin
    Su, Nan
    Kilberg, Michael S.
    BIOCHEMICAL JOURNAL, 2009, 417 : 695 - 703
  • [29] PKG1-modified TSC2 regulates mTORC1 activity to counter adverse cardiac stress
    Mark J. Ranek
    Kristen M. Kokkonen-Simon
    Anna Chen
    Brittany L. Dunkerly-Eyring
    Miguel Pinilla Vera
    Christian U. Oeing
    Chirag H. Patel
    Taishi Nakamura
    Guangshuo Zhu
    Djahida Bedja
    Masayuki Sasaki
    Ronald J. Holewinski
    Jennifer E. Van Eyk
    Jonathan D. Powell
    Dong Ik Lee
    David A. Kass
    Nature, 2019, 566 : 264 - 269
  • [30] MTORC1 regulates cardiac function and myocyte survival through 4E-BP1 inhibition in mice
    Zhang, Denghong
    Contu, Riccardo
    Latronico, Michael V. G.
    Zhang, Jian Ling
    Rizzi, Roberto
    Catalucci, Daniele
    Miyamoto, Shigeki
    Huang, Katherine
    Ceci, Marcello
    Gu, Yusu
    Dalton, Nancy D.
    Peterson, Kirk L.
    Guan, Kun-Liang
    Brown, Joan Heller
    Chen, Ju
    Sonenberg, Nahum
    Condorelli, Gianluigi
    JOURNAL OF CLINICAL INVESTIGATION, 2010, 120 (08): : 2805 - 2816