LOW-REGULARITY SCHRODINGER MAPS

被引:0
|
作者
Ionescu, Alexandru D. [1 ]
Kenig, Carlos E. [2 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[2] Univ Chicago, Dept Math, Chicago, IL 60637 USA
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the Schrodinger map initial-value problem {partial derivative(t)s = s x Delta(x)s on R-d x [-1, 1]; s(0) = s(0) is locally well posed for small data s(0) is an element of H-Q(sigma 0)(R-d; S-2), sigma(0) > (d + 1)/2, Q is an element of S-2.
引用
收藏
页码:1271 / 1300
页数:30
相关论文
共 50 条
  • [21] Global smoothing for the periodic Benjamin equation in low-regularity spaces
    SHI ShaoGuang
    LI JunFeng
    ScienceChina(Mathematics), 2013, 56 (10) : 2051 - 2061
  • [22] Domain decomposition methods for the diffusion equation with low-regularity solution
    Ciarlet, P., Jr.
    Jamelot, E.
    Kpadonou, F. D.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (10) : 2369 - 2384
  • [23] Low-regularity solutions of the periodic Fornberg-Whitham equation
    Tian, Lixin
    Chen, Yuexia
    Jiang, Xiuping
    Xia, Limeng
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (07)
  • [24] A symmetric low-regularity integrator for the nonlinear Schrödinger equation
    Bronsard, Yvonne Alama
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2023, 44 (06) : 3648 - 3682
  • [25] Low-regularity solutions of the periodic Camassa-Holm equation
    De Lellis, Camillo
    Kappeler, Thomas
    Topalov, Peter
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (01) : 87 - 126
  • [26] Low-regularity solutions of the periodic general Degasperis-Procesi equation
    Tian, Lixin
    Chen, Yuexia
    Liu, Yue
    Gao, Ying
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (08) : 2802 - 2812
  • [27] On averaged exponential integrators for semilinear wave equations with solutions of low-regularity
    Buchholz, Simone
    Doerich, Benjamin
    Hochbruck, Marlis
    PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2021, 2 (02):
  • [28] Convergence of an Embedded Exponential-Type Low-Regularity Integrators for the KdV Equation without Loss of Regularity
    Yongsheng Li
    Yifei Wu
    Fangyan Yao
    AnnalsofAppliedMathematics, 2021, 37 (01) : 1 - 21
  • [29] AN EMBEDDED EXPONENTIAL-TYPE LOW-REGULARITY INTEGRATOR FOR MKDV EQUATION
    Ning, C. U., I
    Wu, Yifei
    Zhao, Xiaofei
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2022, 60 (03) : 999 - 1025
  • [30] Low-regularity Seiberg-Witten moduli spaces on manifolds with boundary
    Suwara, Piotr
    SELECTA MATHEMATICA-NEW SERIES, 2023, 29 (03):