Lie Triple Derivations on Triangular Matrices

被引:14
|
作者
Benkovic, Dominik [1 ]
机构
[1] Univ Maribor, FNM, SLO-2000 Maribor, Slovenia
关键词
triangular matrix algebra; Lie triple derivation; Lie derivation; derivation; JORDAN DERIVATIONS; BANACH-ALGEBRAS; SYMMETRIC AMENABILITY; NEUMANN ALGEBRAS; MAP CONJECTURES; NEST-ALGEBRAS; RINGS; COMMUTATIVITY; MAPPINGS;
D O I
10.1142/S1005386711000708
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let T(n)(C) be the algebra of all n x n upper triangular matrices over a commutative unital ring C, and let M be a 2-torsion free unital T(n)(C)-bimodule. We show that every Lie triple derivation d : T(n)(C) -> M is a sum of a standard Lie derivation and an antiderivation.
引用
收藏
页码:819 / 826
页数:8
相关论文
共 50 条
  • [21] Generalized Lie triple derivations
    Li, Hailing
    Wang, Ying
    LINEAR & MULTILINEAR ALGEBRA, 2011, 59 (03): : 237 - 247
  • [22] Nonlinear Lie derivations of triangular algebras
    Yu, Weiyan
    Zhang, Jianhua
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (11) : 2953 - 2960
  • [23] Characterizations of Lie derivations of triangular algebras
    Ji, Peisheng
    Qi, Weiqing
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (05) : 1137 - 1146
  • [24] Generalized Lie derivations on triangular algebras
    Benkovic, Dominik
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 434 (06) : 1532 - 1544
  • [25] Additive ξ -Lie σ-derivations on triangular algebras
    Zhang, Xiaoqin
    Qi, Xiaofei
    SCIENCEASIA, 2024, 50 (04):
  • [26] Derivations of the Lie algebra of infinite strictly upper triangular matrices over a commutative ring
    Holubowski, Waldemar
    Kashuba, Iryna
    Zurek, Sebastian
    COMMUNICATIONS IN ALGEBRA, 2017, 45 (11) : 4679 - 4685
  • [27] Lie triple centralizers of the algebra of dominant block upper triangular matrices
    Ghimire, Prakash
    Benavides, Magdalena
    King, Sheral
    Young, Lavona
    LINEAR & MULTILINEAR ALGEBRA, 2025, 73 (01): : 163 - 175
  • [28] Nonlinear Lie Triple Higher Derivations on Triangular Algebras by Local Actions: A New Perspective
    Liang, Xinfeng
    Ren, Dandan
    Li, Qingliu
    AXIOMS, 2022, 11 (07)
  • [29] Jordan derivations and antiderivations on triangular matrices
    Benkovic, D
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 397 : 235 - 244
  • [30] CHARACTERIZING LIE (ξ-LIE) DERIVATIONS ON TRIANGULAR ALGEBRAS BY LOCAL ACTIONS
    Qi, Xiaofei
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2013, 26 : 816 - 835